2025-YIL
28-29-MART
“YANGI O‘ZBEKISTONDA MUHANDIS KADRLAR TAYORLASHNING ISTIQBOLLARI VA
YOSHLARNING IJTIMOIY - SIYOSIY FAOLLIGINI OSHIRISHNING DOLZARB MASALALARI”
Respublika ilmiy-texnik konferensiyasi
304
UCH O‘LCHOVI DIFFERENSIAL TENGLAMALAR SISTEMASINING MUVOZANAT
NUQTALARINING TURLARI
Xusanov Bazar
Samarqand davlat arxitektura-qurilish universiteti, dotsent
E-mail:
Shodiyev Kamoliddin
Iqtisodiyot fanlari bo’yicha falsafa doktori, PhD
E-mail:
shodiyevkamoliddin91@gmail.com
Vahobov Mehroj
O‘qituvchi
E-mail:
https://doi.org/10.5281/zenodo.15089083
Annatasiya.
Uch o’lchovli fazoda o’zgarmas koeffsentli bir jinsli differensial tenlamalar
sistemasini trayektoriyalarini muvozanat nuqta
𝑂(0,0,0)
atrofida joylashishini o’rganiladi.
Kalit so’zi
: Muvozanat, xaraktrestik tenglama, asimtotik, tugun, turg’unmas, trayektoriya,
turg’un tugun, Turvis sharti, turg’un fokus, turg’unmas fokus, focus markaz, karrali haqiqiy va
har xil, qo’shma kompleks turg’unmas egar, turg’un tug’ma tugun.
Bu maqolada o’zgarmas koeffesintli bir jinsli tenglamalar sistemasi uch o’lchovli fazoda
berilgan bo’lsin
{
𝑑𝑥
1
𝑑𝑡
= 𝑎
11
𝑥
1
+ 𝑎
12
𝑥
2
+ 𝑎
13
𝑥
3
𝑑𝑥
2
𝑑𝑡
= 𝑎
21
𝑥
1
+ 𝑎
22
𝑥
2
+ 𝑎
23
𝑥
3
𝑑𝑥
3
𝑑𝑡
= 𝑎
31
𝑥
1
+ 𝑎
32
𝑥
2
+ 𝑎
33
𝑥
3
𝑑𝑒𝑡𝐴 ≠ 0,
𝐴 = (𝑎
𝑖𝑗
) (1)
Sistema traektoriyalarning
𝑂(0,0,0)
muvazanat (yoki maxsus) nuqta atrofida joylashini
o’rganamiz (1) Sistema yechimini
𝑥
𝑘
= 𝛼𝑒
2𝑡
(𝑘 = 1,3
̅̅̅̅)
ko’rinishida izlaymiz
𝜆
ni topish uchun
xarakteristik tenglama tuzamiz
∆(𝜆) = |
𝑎
11
− 𝜆
𝑎
12
𝑎
13
𝑎
21
𝑎
22
− 𝜆
𝑎
23
𝑎
31
𝑎
32
𝑎
33
− 𝜆
| = 0 (2)
Yoki
𝜆
3
+ 𝑎
1
𝜆
2
+ 𝑎
2
𝜆 + 𝑎
3
= 0 𝛼
1
, 𝛼
2
, 𝛼
3
- lar aniq ko’paytuvchilarga ikkitasi
uchinchisi orqali quydagi sistemadan topiladi.
{
(𝑎
11
− 𝜆)𝛼
1
+ 𝑎
12
𝛼
2
+ 𝑎
13
𝛼
3
= 0
𝑎
21
𝛼
1
+ (𝑎
22
− 𝜆)𝛼
2
+ 𝑎
23
𝛼
3
= 0
𝑎
31
𝛼
1
+ 𝑎
32
𝛼
2
+ (𝑎
33
− 𝜆)𝛼
3
= 0
(3)
Quydagi hollarda bo’lishi mumkin ularni ko’rib chiqamiz alohida-alohida
a) Xarakteristik tenglamani ildizlari
𝜆
𝑖
(𝑖 = 1,3
̅̅̅̅)
haqiqiy va har xil, u holda uning yechimi
𝑥
𝑘
= 𝑐
1
𝛽
𝑘
𝑒
𝜆
1
𝑡
+ 𝑐
2
𝛾
𝑘
𝑒
𝜆
2
𝑡
+ 𝑐
3
𝛿
𝑘
𝑒
𝜆
3
𝑡
𝑘 = 1,3
̅̅̅̅ (4)
ko’rinishda yoziladi.
𝛽
𝑘
, 𝛾
𝑘
, 𝛿
𝑘
lar (3) sistemaga mos ravishda
𝜆 = 𝜆
1
, 𝜆 = 𝜆
2
, 𝜆 = 𝜆
3
larni quydagilar orqali
topiladi
𝑐
1
, 𝑐
2
, 𝑐
3
lar erkli o’zgarmas. O’z navbatida bu yerda quydagi holler bo’lishi mumkin.
1) barcha
𝑖
lar uchun
𝜆
𝑖
< 0.
U vaqtda muvozanat nuqta
𝑥
1
= 0, 𝑥
2
= 0, 𝑥
3
= 0
asimtotik
to’rg’un, chunki (3) formuladagi ko’paytuvchi
𝑒
𝜆
𝑖
𝑡
𝑙𝑎𝑟 𝑡 = 𝑡
0
moment koordinatalari boshini
𝛿
atrofida bo’lgan barcha nuqtalar
𝑡
ning istalga kata qiymatlari uchun koordinatalar boshining
2025-YIL
28-29-MART
“YANGI O‘ZBEKISTONDA MUHANDIS KADRLAR TAYORLASHNING ISTIQBOLLARI VA
YOSHLARNING IJTIMOIY - SIYOSIY FAOLLIGINI OSHIRISHNING DOLZARB MASALALARI”
Respublika ilmiy-texnik konferensiyasi
305
istalgan kichik
𝛿
atrofiga tushib qoladi va
𝑡 → ∞
da koordinatalar boshiga intiladi. 1-chizmada
muvozanat nuqta atrofidagi traektoriyalar joylashishi ko’rsatilgan. Muvozanat turg’un, tugun
turg’un deyladi. Strelkalar
𝑡
o’sishi bilan traektoriyalar bo’yicha harakat yo’nalishini bildiradi. Bu
hol (1) Sistema quydagi koefsentli tengsizliklar bajarilishi o’rinli bo’ladi.
1- chizma
𝑎
1
> 0,
∆
2
= |
𝑎
1
1
𝑎
3
𝑎
2
| > 0,
𝑎
3
> 0, 𝐷 < 0.
Bu yerda
𝐷 = 𝑞
2
+ 𝑝
2
xarakteristik tenglamaning diskriminanti
2𝑞 =
2𝑎
1
3
27
−
𝑎
1
𝑎
2
3
+ 𝑎
3
, 3𝑝 =
3𝑎
2
− 𝑎
1
2
3
2)
𝜆
1
> 0, 𝜆
2
> 0, 𝜆
3
> 0
bo’lsin. Bu holda
𝑡
ni
𝑡
ga olmashtersak, yuqorida ko’rilgan
strelkalarini teskari quyish kerak) muvozanat nuqta turg’unmas tugun deyladi bu hol koefsentli
𝑎
1
< 0, ∆
2
< 0, 𝑎
2
> 0, 𝐷 < 0
tengsizliklar bajarilganda o’rinli bo’ladi.
2- chizma
3) Agar
𝜆
1
> 0, 𝜆
2
< 0, 𝜆
3
< 0
bo’lsa, muvozanat nuqta turg’unmas chunki
𝑥
𝑘
= 𝑐
1
𝛽
𝑘
𝑒
𝜆
𝑖
𝑡
Traektoriyalar bo’yicha harakat qiluvchi nuqtalar (
𝑐
1
ni qanchalik kichik olmaylik)
𝑡
o’sishi bilan koordinatalar boshidagi
𝜀
atrofidan chiqadi
𝑡 → ∞
koordinatalar boshiga intiluvchi
harakatlar
𝑥
𝑘
= 𝑐
2
𝛾
𝑘
𝑒
𝜆
2
𝑡
+ 𝑐
3
𝛿
𝑘
𝑒
𝜆
3
𝑡
ko’rinishda bo’lib, butun bir tekslikni tashkil qiladi (2-
chizma).
(1) sistema
𝐷 < 0
gurbis sharti bajarilgan holda uchraydi
b) Xarakteristik tenglamani ildizlari bajarilmagan holda uchraydi ikkitasi qo’shma
kompleks, ya’ni
𝜆 = 𝜆
1
, 𝜆
2,3
= 𝑝 ± 𝑞𝑖 , 𝑞 ≠ 0
bu holda Sistema uchun umumiy yechim
𝑥
𝑘
= 𝑐
1
𝛽
𝑘
𝑒
𝜆
1
𝑡
+ 𝑒
𝑝𝑡
(𝑐
1
𝑐𝑜𝑠𝑞𝑡+𝑐
2
𝑠𝑖𝑛𝑞𝑡) 𝑘 = 1,3
̅̅̅̅ (5)
ko’rinishda bo’ladi
𝑐
2
𝑖
> 𝑐
3
𝑖
𝑙𝑎𝑟 (𝑖 = 2,3) 𝑐
2
𝑖
, 𝑐
3
𝑖
larning birorta chiziqli konbinatsiyasidan
iborat bo’ladi. Shu sabali bu yerda quydagi holler uchraydi:
1)
𝜆
1
< 0, 𝜆
2,3
= 𝑝 ± 𝑞𝑖 , 𝑝 < 0 𝑞 ≠ 0
ko’paytuvchi
𝑒
𝑝𝑡
, 𝑝 < 0 𝑡 𝑛𝑖𝑛𝑔
o’sishi bilan
nolga intiladi, ikkinchi davriy ko’paytuvchi (5) formulada har doim chekli bo’ladi.
𝑡 = 𝑡
0
2025-YIL
28-29-MART
“YANGI O‘ZBEKISTONDA MUHANDIS KADRLAR TAYORLASHNING ISTIQBOLLARI VA
YOSHLARNING IJTIMOIY - SIYOSIY FAOLLIGINI OSHIRISHNING DOLZARB MASALALARI”
Respublika ilmiy-texnik konferensiyasi
306
momentda koordinatalar momentda koordinatalar boshininh
𝛿
atrofida bo’lgan nuqta traektoriya
buylab harakat qilib
𝑡
ning o’sishi bilan koordinatalar boshiga yaqinlashib boradi va
𝑡 → ∞
da
nolga intiladi. Nol yechim- asimtotik turg;un muvozanat nuqtaga ega turg’un focus deyladi (3-
chizma ).
Bu holda
𝐷 > 0, 𝑎
1
> 0, ∆
2
> 0, 𝑎
3
> 0
bo’ladi.
3-chizma
2)
𝜆
1
> 0, 𝜆
2,3
= 𝑝 ± 𝑞𝑖 , 𝑝 > 0 𝑞 ≠ 0
bo’lsin bu yerda
𝑡 𝑛𝑖 𝑡 𝑔𝑎
almashtersak qolgan
hollarga kelamiz. Traektoriyalar joylashishi 3-chizmadagi kabi bo’ladi, lekin stelkalarteskari
quyiladi. Muvozanat nuqta turg’unmas focus deyladi.
Bu holda
𝐷 > 0, 𝑎
1
< 0, ∆
2
< 0, 𝑎
3
> 0
bo’ladi
3)
Agar
𝜆 = 𝜆
1
, 𝜆
2,3
= 𝑝 ± 𝑞𝑖 , 𝑝 < 0, 𝜆, 𝑞 ≠ 0
bo’lsa
(5)
formuladagi
qushuluvchilardan bittasi o’suvchi, hisoblanadi
𝑡 = 𝑡
0
𝑚𝑜𝑚𝑒𝑛𝑡𝑎 𝛿
atrofida bo’lgan
𝑡
o’sishi
bilan traektoriya bo’ylab koordinata boshidan uzoqlasha boshlaydi, demak nol yechim
turg’unmas. Muvozanat nuqtaga egar-fokus deyladi.
𝐷 > 0
bo’lib, Turvis sharti bajarilmasa
muvozanat nuqta egar-fokus bo’ladi.
4)
𝜆
1
, 𝜆
2,3
= ±𝑞𝑖 , 𝑝 = 0
bo’lsa
𝜆
1
ning ishorasiga qarab nol yechim turg’un yoki
turg’unmas bo’lishi mumkin.
Muvozanat nuqta focus markaz (4-chizma) egar-fokus bo’lishi mumkin.
4-chizma
b) Xarakteristik ildizlari karrali
𝜆
1
= 𝜆
2
, 𝜆
3
, 𝜆
1
≠ 𝜆
3
ya’ni xarakteristik tenglamani
diskeriminanti
𝐷 = 0.
Bu holda (1) sistemaning umumiy yechimi
𝑥
𝑘
(𝑡) = (𝑐
1
𝛽
𝑘
+ 𝑐
2
𝛾
𝑘
𝑡)𝑒
𝜆
1
𝑡
+ 𝑐
3
𝛿
𝑘
𝑒
𝜆
3
𝑡
, 𝑘 = 1,3
̅̅̅̅ (6)
Kurinishda bo’lib kupaytuvchi
𝑒
𝜆
1
𝑘
, 𝑡 → ∞
da nolga intiladi. Shu bilan birga koordinatalar
boshining
𝛿
- atrofidagi istalgan nuqta
𝑡
o’sishi bilan
𝜀
- atrofiga tushadi va nolga intiladi. Nol
yechim asimtotik turgun bo’ladi. Muvozanat nuqta turg’un deyladi bu holda muvozanat a), 1) bilan
turg’un focus b), 1) orasidagi chigaraviy dolda mos keladi, chunki
𝑎
𝑖𝑗
parametrlari ozroq
2025-YIL
28-29-MART
“YANGI O‘ZBEKISTONDA MUHANDIS KADRLAR TAYORLASHNING ISTIQBOLLARI VA
YOSHLARNING IJTIMOIY - SIYOSIY FAOLLIGINI OSHIRISHNING DOLZARB MASALALARI”
Respublika ilmiy-texnik konferensiyasi
307
o’zgartirilganda muvozanat turg’un tugun, a), 1) holda yoki turg’un fokudga o’tishi mumkin, ya’ni
𝑎
𝑖𝑗
parametriga o’zgarish berilganda xaraktrestik tenglamaning karrali ildizlari oddiy haqiqiy yoki
qushma kompleks ildizlari ajralishi mumkin.
2) Agar
𝜆
1
= 𝜆
2
> 0, 𝜆
3
> 0 𝑏𝑜
′
𝑙𝑠𝑎 𝑡 𝑛𝑖 𝑡𝑔𝑎
almashterilsin 1) holdagi natijaga
kelamiz. Faqat traektoriyalar buyicha harakat teskari yo’nalishda bo’ladi. Muvozanat nuqta
turg’unmas tugun deyladi.
3)
𝜆
1
= 𝜆
2
> 0, 𝜆
1
∙ 𝜆
3
< 0
bo’lsin. Nol yechim tugunmas bo’ladi,chunki (6) formulada
𝑡 → ∞ 𝑑𝑎 ‖𝑥(𝑡)‖ → ∞.
Muvozanat nuqta egar deyladi, lekin bu egar
a), 3) holdagi egardan farqi shundaki
𝑎
𝑖𝑗
parametrlarni o’zgarterganda a), 3) holdagi egar
yoki egar fokus b), 3) dagi tugunga o’tish mumkin, chunki
𝑎
𝑖𝑗
paramertlarning o’zgarishi
natijasida ajratilishi mumkin.
a)
𝜆
1
= 𝜆
2
= 𝜆
3
bo’lsin. Xaraktrestik tenglamaning diskerminantida
𝐷 = 0, (1)
Sistema
uchun
𝑥
𝑘
(𝑡) = (𝑐
1
𝛽
𝑘
+ 𝑐
2
𝛾
𝑘
𝑡 + 𝑐
3
𝛿
𝑘
𝑡
2
)𝑒
𝜆
1
𝑡
, 𝑘 = 1,3
̅̅̅̅ (7)
ko’rinishda yoziladi. Quydagi hollar bo’lishi mumkin .
1)
𝜆
1
< 0
bo’lsin
𝑒
𝜆
1
𝑡
ko’paytuvchi
𝑡 → ∞
da tezroq nolga va shu sababli
(𝑐
1
𝛽
𝑘
+ 𝑐
2
𝛾
𝑘
𝑡 + 𝑐
3
𝛿
𝑘
𝑡
2
)𝑒
𝜆
1
𝑡
ifoda
𝑡 → ∞
da nolga intiladi. Nol yechim asimtotik
turg’un. Muvozanat nuqta turg’un tugun boladi.
2)
𝜆
2
> 0
bo’lsin
𝑡
ni
𝑡
ga almashtersak, 1) holdagi natijaga kelamiz. Traektoriyalar
buyicha harakat teskari yunalishda bo’ladi. Muvozanat nuqta turg’unmas tugun bo’ladi.
Xaraktristik sonlar noldan farqli bo’lgan barcha hollarni qarab chiqdik, chunki shartga ko’ra
𝑑𝑒𝑡𝐴 ≠ 0
. Demak yo’qoridagilarga asoslanib tekslikda muvozanat nuqtani quydagicha sinflash
mumkin ekan.
a)
𝜆
1
𝑣𝑎 𝜆
3
haqiqiy va
𝜆
1
≠ 𝜆
3
. Bu holda muvozanat nuqta;
1)
𝜆
1
< 0 , 𝜆
3
< 0
turg’un tugun;
2)
𝜆
2
> 0, 𝜆
3
> 0
turg’unmas tugun;
3)
𝜆
2
< 0, 𝜆
3
> 0
turg’unmas egar;
b)
𝜆
2,3
= 𝑞 ± 𝑞𝑖
. Bu holda;
1)
𝑝 < 0
turg’un fokus;
2)
𝑝 > 0
turg’unmas focus;
3)
𝑝 ≠ 0
markaz tugun;
d)
𝜆
1
= 𝜆
3
. Bu holda;
1)
𝜆
2
= 𝜆
3
< 0
turg’un tug’ma tugun;
2)
𝜆
2
= 𝜆
3
> 0
turg’unmas tug’ma tugun;
Agar
𝑑𝑒𝑡𝐴 = 0
bo’lgan holda (1) tenglamalar sistemasining muvozanat nuqtalarini
kelgusi ishlarimizda sinflaymiz.
Xulosa
Xulosa qilib aytganda bir jinsli uch o’lchovli differensial tenglamalar sistemasini
yechimlarinin muvozanat nuqta
𝑂(0,0,0)
atrofida sinflash uchun tenglamalar sistemasini
xaraktrestik tenglamasini yechimlari
𝜆
1
, 𝜆
2
, 𝜆
3
larning qiymatlariga qarab
𝑑𝑒𝑡𝐴 ≠ 0
da bturg’un tugun, egar focus va turg’unmas tugun , egar focus, markaz
ekanligini teksheriladi.
2025-YIL
28-29-MART
“YANGI O‘ZBEKISTONDA MUHANDIS KADRLAR TAYORLASHNING ISTIQBOLLARI VA
YOSHLARNING IJTIMOIY - SIYOSIY FAOLLIGINI OSHIRISHNING DOLZARB MASALALARI”
Respublika ilmiy-texnik konferensiyasi
308
Adabiyotlar:
1.
Хусанов, Б., & Кулмирзаева, Г. А. (2022). О РАСПРЕДЕЛЕНИЕ
ИЗОЛИРОВАННЫХ ОСОБИХ ТОЧЕК ОДНОЙ СИСТЕМЫ n-МЕРНОМ
ПРОСТРАНСТВЕ. In
" ONLINECONFERENCES" PLATFORM
(pp. 319-324).
2.
Husanov, B., & Mahfuza, T. (2022). GEODESICAL VIEWS IN THE MATHEMATICAL
WORKS OF ABU RAYHAN BERUNI.
Central Asian Journal of Theoretical and Applied
Science
,
3
(6), 123-127. Retrieved from
3.
https://www.cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/568
4.
B., Khusanov, and Fatkhullayev F. "Existence of the Isolated Special Points Three-
dimensional Differential Systems of a Special Look."
JournalNX
, 2020, pp. 239-242.
5.
Bazar, Khusanov, and Kulmirzaeva G. Abduganievna. "Singular Points Classification of
First Order Differential Equations System Not Solved for Derivatives."
International
Journal
on
Integrated
Education
,
vol.
4,
no.
3,
2021,
pp.
448-450,
doi:10.31149/ijie.v4i3.1533.
6.
Matyokubov, B. P., & Saidmuradova, S. M. (2022). METHODS FOR INVESTIGATION
OF THERMOPHYSICAL CHARACTERISTICS OF UNDERGROUND EXTERNAL
BARRIER STRUCTURES OF BUILDINGS. RESEARCH AND EDUCATION, 1(5), 49-
58.
7.
Bolikulovich, K. M., & Pulatovich, M. B. (2022). HEAT-SHIELDING QUALITIES AND
METHODS FOR ASSESSING THE HEAT-SHIELDING QUALITIES OF WINDOW
BLOCKS AND THEIR JUNCTION NODE WITH WALLS. Web of Scientist:
International Scientific Research Journal, 3(11), 829-840.
8.
Egamova, M., & Matyokubov, B. (2023). WAYS TO INCREASE THE ENERGY
EFFICIENCY OF BUILDINGS AND THEIR EXTERNAL BARRIER STRUCTURES.
Eurasian Journal of Academic Research, 3(1 Part 1), 186-191.
9.
Nosirova, S., & Matyokubov, B. (2023). WAYS TO INCREASE THE ENERGY
EFFICIENCY OF EXTERNAL BARRIER CONSTRUCTIONS OF BUILDINGS.
Евразийский журнал академических исследований, 3(3), 145-149.
10.
Husanov, B., Shodiyev, K., & Mehroj, V. (2024). FUNKSIYA EKSTRUMLARINI
IQTISODIY VA QURULISH MASALALARINI YECHISHGA TADBIQI.
Gospodarka
i Innowacje.
,
44
, 11-16
11.
Husanov, B., Shodiyev, K., & Mehroj, V. (2024). TEKISLIKDA TO’G’RI CHIZIQ
TENGLAMALARINI IQTISODIY MASALARNI YECHISHGA TADBIQI.
TA'LIM VA
RIVOJLANISH TAHLILI ONLAYN ILMIY JURNALI
,
4
(1), 11-14
12.
Shodiyev, K., & Mehroj, V. (2024). Chiziqli tenglamalar sistemalarini yechish usullari.
Gospodarka i Innowacje.
,
43
, 49-56.
13.
Khusainov ShamshidinYalgashevic, Shodiyev Kamoliddin Shamsiddin o’g’li, &
KimDinaraVladislavovna. (2021). HEALTH OF CHILDREN OF PRESCHOOL AGE
ANDOPPORTUNITIES OF RECOVERY UNDER THE INFLUENCE OF PHYSICAL
STRESS OFCHILDREN’S PRESCHOOL INSTITUTIONS OF SAMARKAND CITY.
World
2025-YIL
28-29-MART
“YANGI O‘ZBEKISTONDA MUHANDIS KADRLAR TAYORLASHNING ISTIQBOLLARI VA
YOSHLARNING IJTIMOIY - SIYOSIY FAOLLIGINI OSHIRISHNING DOLZARB MASALALARI”
Respublika ilmiy-texnik konferensiyasi
309
14.
Mardonov, B., & Zikiryayev, S. (2024). BA’ZI GEOMETRIYA MASALALARINI
YECHISH USULLARI.
Theoretical aspects in the formation of pedagogical
sciences
,
3
(7), 183-186.
15.
Axmadovich, M. B. (2020). Sfera sirtida joylashgan uchburchaklarni yechishning ba'zi
usullari.
Science and Education
,
1
(2), 23-27.
16.
Usarov, S., Zikiryaev, S., Mardonov, B., & Namazov, G. (2024, May). Numerical analysis
of the process of heat transfer in inhomogeneous media. In
AIP Conference
Proceedings
(Vol. 3147, No. 1). AIP Publishing.
17.
Aхмадович М. Б. . (2024). Интерактивные Веб-Технологии Для Развития
Логического Мышления Инженеров Будущего В Условиях Цифровой
Трансформации Образования.
Miasto Przyszłości
,
52
, 755–761. Retrieved from
https://miastoprzyszlosci.com.pl/index.php/mp/article/view/4713
18.
Mardonov Baxodir Axmadovich. (2024). KELAJAKDAGI MUHANDISLARNI
RAQAMLI TA’LIM ASOSIDA O‘QITISH, SAMARALI VEB-KONTENT YARATISH
METODOLOGIYASI.
IJTIMOIY
FANLARDA
INNOVATSIYA
ONLAYN
ILMIY
JURNALI
,
4
(9),
42–45.
Retrieved
from
https://sciencebox.uz/index.php/jis/article/view/11916
19.
Khusanov, B., Shodiev, K., & Vahobov, M. (2024, November). On exceptional directions
of a homogeneous polynomial system of the second degree. In
American Institute of
Physics Conference Series
(Vol. 3244, No. 1, p. 020039)
20.
Shodiev , K., & Jumanazarov, R. (2025). MATHEMATICS AND SCIENCEAT A HIGH
LEVEL FEATURES OF THE PROBLEM THE DEVELOPMENT OF THINKING
ABILITIES. Modern
Science
and
Research, 4(2),
316–322.
Retrieved
from
https://inlibrary.uz/index.php/science-research/article/view/65793
21.
Shodiev, K., & Jumanazarov, R. (2025). EXCEPTIONAL DIRECTIONS OF A
HOMOGENEOUS POLYNOMIAL. Modern Science and Research, 4(2), 164–171.
Retrieved from
https://inlibrary.uz/index.php/science-research/article/view/65685
22.
Kamolidin Shodiev; Predicting prospects for providing sustainable development of tourism
in the innovative economy.
AIP Conf. Proc.
27 November 2024; 3244 (1):
https://doi.org/10.1063/5.0241472
23.
Bozorboy Khusanov, Kamoliddin Shodiev, Mehroj Vahobov; On exceptional directions of
a homogeneous polynomial system of the second degree.
AIP Conf. Proc.
27 November
https://doi.org/10.1063/5.0241696
24.
INNOVATSION
IQTISODIYOTDA
TURIZM
SOHASINI
BARQAROR
RIVOJLANISHINI
TA'MINLASH
ISTIQBOLLARINI
BASHORATLASH.
(2024). Aktuar
moliya
va
buxgalteriya
hisobi
ilmiy
jurnali , 4 (02),
123-
135.
https://finance.tsue.uz/index.php/afa/article/view/100
25.
Shodiev , K. . (2024). Econometric Models of Forecasting the Sustainable Development of
the Tourism Network in the Innovation Economy.
Miasto Przyszłości
,
46
, 549–558.
Retrieved from
http://miastoprzyszlosci.com.pl/index.php/mp/article/view/2900
26.
Shodiyev, K., & Abduraxmonovich, Q. A. (2023). The Model of Optimization of
Enterprise Production and Increase the Profitability of the Enterprise in a Market Economy.
