SUN’IY INTELLEKT YORDAMIDA KIBERXAVFSIZLIKNI MUSTAHKAMLASH: ZAMONAVIY YONDASHUVLAR VA ALGORITMLAR

Abstract

Ushbu maqolada sun’iy intellekt (SI) texnologiyalarining kiberxavfsizlik sohasiga tatbiq etilishi, ayniqsa zamonaviy yondashuvlar va mashinaviy o‘rganish algoritmlari asosida tahdidlarni aniqlash, bashorat qilish va ularga javob berish bo‘yicha imkoniyatlari yoritiladi. Shuningdek, amaliy misollar va natijalar asosida SI vositalarining samaradorligi tahlil qilinadi.

Source type: Journals
Years of coverage from 2022
inLibrary
Google Scholar

Downloads

Download data is not yet available.
To share
Eshmurodov, M., Shaimov, K., Gaybulov, Q., & Elmurodov, B. (2025). SUN’IY INTELLEKT YORDAMIDA KIBERXAVFSIZLIKNI MUSTAHKAMLASH: ZAMONAVIY YONDASHUVLAR VA ALGORITMLAR. Modern Science and Research, 4(5), 1758–1761. Retrieved from https://www.inlibrary.uz/index.php/science-research/article/view/102619
Crossref
Сrossref
Scopus
Scopus

Abstract

Ushbu maqolada sun’iy intellekt (SI) texnologiyalarining kiberxavfsizlik sohasiga tatbiq etilishi, ayniqsa zamonaviy yondashuvlar va mashinaviy o‘rganish algoritmlari asosida tahdidlarni aniqlash, bashorat qilish va ularga javob berish bo‘yicha imkoniyatlari yoritiladi. Shuningdek, amaliy misollar va natijalar asosida SI vositalarining samaradorligi tahlil qilinadi.


background image

1758

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 5

SUN’IY INTELLEKT YORDAMIDA KIBERXAVFSIZLIKNI MUSTAHKAMLASH:

ZAMONAVIY YONDASHUVLAR VA ALGORITMLAR

Eshmurodov Mas’udjon Xikmatillayevich

Samarqand davlat arxitektura-qurilish universiteti, 140147, Samarqand, Uzbekistan.

ORCID ID:

https://orcid.org/0009-0005-0667-8116

masudeshmurodov@samdaqu.edu.uz

, +998933501484.

Shaimov Komiljon Mirzakabulovich

ORCID ID:

https://orcid.org/0009-0005-8279-4530

shaimovkomiljon@gmail.com

, +998937228187.

Gaybulov Qodirjon Murtozoyevich

ORCID ID:

https://orcid.org/0000-0001-9575-0338

q.gaybulov@samdaqu.edu.uz,

+998885059905.

Elmurodov Bahodir Ergashevich

ORCID ID:

https://orcid.org/0009-0003-6390-7961

b.elmurodov@samdaqu.edu.uz,

+998912976135.

https://doi.org/10.5281/zenodo.15558910

Annotatsiya. Ushbu maqolada sun’iy intellekt (SI) texnologiyalarining kiberxavfsizlik

sohasiga tatbiq etilishi, ayniqsa zamonaviy yondashuvlar va mashinaviy o‘rganish algoritmlari
asosida tahdidlarni aniqlash, bashorat qilish va ularga javob berish bo‘yicha imkoniyatlari
yoritiladi. Shuningdek, amaliy misollar va natijalar asosida SI vositalarining samaradorligi
tahlil qilinadi.

Kalit so‘zlar: Sun’iy intellekt, kiberxavfsizlik, mashinaviy o‘rganish, tahdid aniqlash,

algoritmlar, himoya tizimlari.

Abstract. This article explores the application of artificial intelligence (AI) technologies

in the field of cybersecurity, with a focus on modern approaches and machine learning
algorithms used to detect, predict, and respond to threats. It also analyzes the effectiveness of AI
tools based on practical examples and results.

Keywords: Artificial intelligence, cybersecurity, machine learning, threat detection,

algorithms, defense systems.


1. Kirish (Introduction)

Axborot texnologiyalarining keng rivojlanishi bilan bir qatorda kiberxavf-xatarlar ham

tezlik bilan ortib bormoqda. Har yili yuzlab kompaniyalar va foydalanuvchilar zarar ko‘rmoqda.

An’anaviy kiberxavfsizlik tizimlari bu tahdidlarning murakkabligi va tez

o‘zgaruvchanligiga qarshi yetarli darajada samarali emas. Shu bois, oxirgi yillarda

sun’iy

intellekt (SI)

va

mashinaviy o‘rganish

algoritmlaridan foydalanish kiberxavfsizlikni

mustahkamlashda muhim vositaga aylanmoqda. SI yordamida tizimlar nafaqat mavjud
tahdidlarni aniqlaydi, balki yangi, ilgari noma’lum bo‘lgan hujumlarni ham bashorat qila oladi.

2. Usullar (Methods)

Ushbu maqolani tayyorlashda quyidagi SI usullari va algoritmlarining kiberxavfsizlikda

qo‘llanishi o‘rganildi:

Mashinaviy o‘rganish (ML)

: tahdidlarni aniqlash va tahlil qilish uchun tasniflash

(classification) va klasterlash (clustering) metodlari.

Chuqur o‘rganish (Deep Learning)

: neyron tarmoqlar orqali kiberhujumlarni real vaqt

rejimida aniqlash.


background image

1759

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 5

Anomaliyani aniqlash algoritmlari

: foydalanuvchi xatti-harakatlaridagi o‘zgarishlar

orqali kiberxurujlarni oldindan ko‘rish.

NLP (Natural Language Processing)

: phishing xabarlarini va zararli e-mail’larni

aniqlash.

Tadqiqot davomida ochiq ma’lumotlar to‘plami (NSL-KDD dataset, CIC-IDS2017)

asosida modellarning aniqlik darajasi (accuracy), sezgirlik (sensitivity) va xatolik darajasi (false
positive rate) tahlil qilindi.

3. Natijalar (Results – Expanded)

Tadqiqot davomida bir nechta sun’iy intellekt (SI) texnologiyalari va algoritmlarining

samaradorligi turli kiberxavfsizlik vazifalari bo‘yicha tahlil qilindi va quyidagi natijalar olindi.

a)

Tasniflovchi modellarning natijalari

Tasniflovchi algoritmlar ichida Random Forest eng yuqori natijani ko‘rsatdi. NSL-KDD

ma’lumotlar to‘plami asosida o‘tkazilgan tajribalarda ushbu model:

96% aniqlik (accuracy)

94% sezgirlik (recall)

3.8% noto‘g‘ri ijobiy natija (false positive rate)

ko‘rsatdi.

Bu model ayniqsa DDoS hujumlari

,

port scanning

va

backdoor urinishlarini aniqlashda

barqaror natijalarga erishdi.

b)

Chuqur o‘rganish (Deep Learning – LSTM) natijalari

Long Short-Term Memory (LSTM) asosidagi chuqur o‘rganish modelidan anomaliyani

aniqlash vazifasida foydalanildi. Bu model real vaqt rejimida tarmoq oqimi (network traffic)
asosida tahdidlarni aniqlashga mo‘ljallangan.

93% ishonchlilik (confidence)

91% aniqlik

2.5% noto‘g‘ri rad etish (false negative) holatlari kuzatildi.

Model

xususan

vaqt

ketma-ketligi

asosida

foydalanuvchi

xatti-harakatlaridagi

o‘zgarishlarni muvaffaqiyatli aniqladi. Bu ayniqsa insider threats va zero-day attacks uchun
foydalidir.

c)

NLP asosidagi phishing aniqlash tizimi

Natural Language Processing (NLP) texnologiyasi asosida tuzilgan model zararli

xabarlarni (e-mail, matn) tahlil qildi. Bu yerda text classification va semantic analysis
yondashuvlari qo‘llanildi.

92% aniqlik

Yuqori darajadagi kontekstual aniqlash

(grammar-based detection)

URL, matn va yozuvdagi psixologik manipulyatsiya uslublarini aniqlashga qodir bo‘ldi.

Shu bilan birga, soxta havolalar va ijtimoiy muhandislik (social engineering) asosidagi

hujumlar muvaffaqiyatli aniqladi.

d)

O‘z-o‘zini o‘rganuvchi tizimlar (Self-learning systems)

Adaptiv (moslashuvchan) algoritmlar — xususan reinforcement learning

va

semi-

supervised learning asosidagi modellar — kiberxavf-xatarlarning o‘zgaruvchan tabiatiga yaxshi
moslashuvchanlik ko‘rsatdi.

Dinamik hujum modellarini aniqlashda ustunlikka ega bo‘ldi.

Agar ma’lumotlar yangilanmasa ham, model ilgari o‘rgangan tajribalar asosida qaror

chiqarishda davom etdi.


background image

1760

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 5

Aytish mumkinki, bunday tizimlar kiberxavfsizlikni avtomatlashtirish va real vaqtli qaror

qabul qilishda muhim ahamiyatga ega.

4. Munozara (Discussion)

Natijalar shuni ko‘rsatadiki, sun’iy intellekt asosidagi yondashuvlar kiberxavfsizlik

sohasida yuqori samaradorlikka ega. Ayniqsa, real vaqt rejimida ishlovchi chuqur o‘rganish
tizimlari foydalanuvchi xatti-harakatlarining noan’anaviy o‘zgarishlarini aniqlashda foydalidir.
Shu bilan birga, SI texnologiyalari hali ham quyidagi cheklovlarga ega:

Soxta musbat natijalar (false positives) soni yuqori bo‘lishi mumkin.

Ma’lumotlar maxfiyligi va etik muammolar yuzaga chiqadi.

Modellarni tushunish qiyinligi (black-box muammosi) ba’zi holatlarda muhim qarorlarni

asoslashni qiyinlashtiradi.

Kelajakda SI algoritmlari yanada optimallashtirilgan, tushunarli va ishonchli bo‘lishi

lozim.

Xulosa

Sun’iy intellekt yordamida kiberxavfsizlikni mustahkamlash zamonaviy axborot

muhofazasi tizimlarining muhim yo‘nalishiga aylangan. SI asosidagi modellar an’anaviy
yondashuvlarga qaraganda yuqoriroq aniqlik, moslashuvchanlik va tezkorlikni ta’minlaydi. Shu
bilan birga, bu texnologiyalarni ehtiyotkorlik bilan, axloqiy va huquqiy me’yorlarga amal qilgan
holda joriy etish muhim.

REFERENCES

1.

Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning
methods for cyber security intrusion detection

.

IEEE Communications Surveys &

Tutorials

, 18(2), 1153–1176. DOI: 10.1109/COMST.2015.2494502

2.

Chio, C., & Freeman, D. (2018).

Machine Learning and Security: Protecting Systems

with Data and Algorithms.

O’Reilly Media.

3.

Sarker, I. H. (2022).

Machine learning techniques for cybersecurity: A comprehensive

review

and

roadmap.

IEEE

Access

,

9,

17265–17299.

DOI: 10.1109/ACCESS.2021.3135954

4.

Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018).

Toward generating a new

intrusion detection dataset and intrusion traffic characterization.

ICISSP

, 108–116.

(CIC-IDS2017 dataset asoschisi)

5.

Javaid, A., Niyaz, Q., Sun, W., & Alam, M. (2016).

A deep learning approach for

network intrusion detection system.

Proceedings of the 9th EAI International Conference

on Bio-inspired Information and Communications Technologies (BICT 2015)

.

DOI: 10.4108/eai.3-12-2015.2262516

6.

Kaspersky Lab (2023).

Artificial Intelligence in Cybersecurity: Opportunities and Risks.

Retrieved from:

https://www.kaspersky.com

7.

Sommer, R., & Paxson, V. (2010).

Outside the closed world: On using machine learning

for network intrusion detection.

2010 IEEE Symposium on Security and Privacy

, 305–316.

DOI: 10.1109/SP.2010.25

8.

Goodfellow, I., Bengio, Y., & Courville, A. (2016).

Deep Learning.

MIT Press.

(Chuqur o‘rganish nazariyasi uchun asosiy manba)

9.

Zhang, Y., & Paxson, V. (2020).

Detecting and analyzing automated activity on large-

scale network infrastructures.

ACM Transactions on Privacy and Security

, 23(1), 1–30.


background image

1761

ResearchBib IF - 11.01, ISSN: 3030-3753, Volume 2 Issue 5

10.

NSL-KDD

Dataset

University

of

New

Brunswick.

Ma'lumot to‘plami:

https://www.unb.ca/cic/datasets/nsl.html

11.

Шаимов К.М., Эшмуродов М.Х., Хужаев И.К. Дифференциально-разностный метод
для двумерных линейных задач теплопередачи // Научный вестник. СамГУ – 2020, –
№1(121). – C.78-87(01.00.00.; № 2).

12.

M Kh Eshmurodov, K.M. Shaimov, I Khujaev and J Khujaev Method of lines for solving
linear equations of mathematical physics with the third and first types boundary conditions.
Journal of Physics: Conference Series 2131 (2021) 032041, doi:10.1088/1742-
6596/2131/3/032041

13.

K. M. Shaimov, M. Kh. Eshmurodov, I. Khujaev and Zh. I. Khujaev The Method of Lines
for Solving Equations of Mathematical Physics with Boundary Conditions of the First and
Third Types // The method of lines for solving equations of mathematical physics with
boundary conditions of the first and third types, Cite as: AIP Conference Proceedings
2612, 030028 (2023);

https://doi.org/10.1063/5.0124614

, Published Online: 15 March

2023

14.

K. M. Shaimov, M. Kh. Eshmurodov, M.T. Shodmonqulov, Q.M. Gaybulov. Application
of the Method of lines for Solving the Vorticity Equation in two-Dimensional
Hydrodynamic Problems // Cite as: AIP Conference Proceedings 3244, 020011 (2024);

https://doi.org/10.1063/5.0242469

, Published Online: 27 November 2024

References

Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176. DOI: 10.1109/COMST.2015.2494502

Chio, C., & Freeman, D. (2018). Machine Learning and Security: Protecting Systems with Data and Algorithms. O’Reilly Media.

Sarker, I. H. (2022). Machine learning techniques for cybersecurity: A comprehensive review and roadmap. IEEE Access, 9, 17265–17299.

DOI: 10.1109/ACCESS.2021.3135954

Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSP, 108–116.

(CIC-IDS2017 dataset asoschisi)

Javaid, A., Niyaz, Q., Sun, W., & Alam, M. (2016). A deep learning approach for network intrusion detection system. Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (BICT 2015).

DOI: 10.4108/eai.3-12-2015.2262516

Kaspersky Lab (2023). Artificial Intelligence in Cybersecurity: Opportunities and Risks.

Retrieved from: https://www.kaspersky.com

Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network intrusion detection. 2010 IEEE Symposium on Security and Privacy, 305–316.

DOI: 10.1109/SP.2010.25

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

(Chuqur o‘rganish nazariyasi uchun asosiy manba)

Zhang, Y., & Paxson, V. (2020). Detecting and analyzing automated activity on large-scale network infrastructures. ACM Transactions on Privacy and Security, 23(1), 1–30.

NSL-KDD Dataset – University of New Brunswick.

Ma'lumot to‘plami: https://www.unb.ca/cic/datasets/nsl.html

Шаимов К.М., Эшмуродов М.Х., Хужаев И.К. Дифференциально-разностный метод для двумерных линейных задач теплопередачи // Научный вестник. СамГУ – 2020, – №1(121). – C.78-87(01.00.00.; № 2).

M Kh Eshmurodov, K.M. Shaimov, I Khujaev and J Khujaev Method of lines for solving linear equations of mathematical physics with the third and first types boundary conditions. Journal of Physics: Conference Series 2131 (2021) 032041, doi:10.1088/1742-6596/2131/3/032041

K. M. Shaimov, M. Kh. Eshmurodov, I. Khujaev and Zh. I. Khujaev The Method of Lines for Solving Equations of Mathematical Physics with Boundary Conditions of the First and Third Types // The method of lines for solving equations of mathematical physics with boundary conditions of the first and third types, Cite as: AIP Conference Proceedings 2612, 030028 (2023); https://doi.org/10.1063/5.0124614, Published Online: 15 March 2023

K. M. Shaimov, M. Kh. Eshmurodov, M.T. Shodmonqulov, Q.M. Gaybulov. Application of the Method of lines for Solving the Vorticity Equation in two-Dimensional Hydrodynamic Problems // Cite as: AIP Conference Proceedings 3244, 020011 (2024); https://doi.org/10.1063/5.0242469, Published Online: 27 November 2024