This paper presents a comprehensive benchmark and survey of fully unsupervised concept drift detectors (UCDD) designed to identify and adapt to concept drift in real-world data streams. Concept drift refers to the phenomenon where the statistical properties of a data stream change over time, leading to the deterioration of model accuracy if not detected and adjusted. The study reviews the state of the art in UCDDs, evaluates their performance on various real-world datasets, and identifies challenges and open research areas in the field. Through empirical experiments and a systematic review of existing methods, we highlight key factors influencing the performance of these detectors in unsupervised environments.
Koʻrishlar
Yuklashlar
hh-index
Iqtibos
inLibrary — ochiq fan (Open Science) paradigmasi asosida qurilgan ilmiy elektron kutubxona boʻlib, uning asosiy vazifalari ilm-fan va ilmiy faoliyatni ommalashtirish, ilmiy nashrlar sifatini jamoatchilik nazorati, fanlararo tadqiqotlarni rivojlantirish, zamonaviy ilmiy tadqiqot instituti hisoblanadi. qayta koʻrib chiqish, oʻzbek ilm-fanining iqtiboslarini oshirish va bilim infratuzilmasini shakllantirish.
Aloqalar:
O‘zbekiston Respublikasi, Toshkent sh., Parkent ko‘chasi 51-uy, 2-qavat