METHODOLOGY OF SOLVING OLYMPIAD PROBLEMS USING INTEGRAL TECHNIQUES

Annotasiya

This article presents a detailed analysis of two advanced problems located at the intersection of mathematical analysis and linear algebra. The first problem,demonstrates the integration of a logarithmic function with a rational expression, solved using series expansion techniques. The second problem involves the integration of a matrix-valued cosine function under the Gaussian kernel, offering an approach to operator-valued functions and matrix analysis. Both problems are designed to enhance students’ theoretical knowledge, logical reasoning, and familiarity with competition-level mathematical problem-solving. The article serves as a methodological guide for gifted learners aiming to deepen their understanding of advanced mathematical concepts.

Manba turi: Jurnallar
Yildan beri qamrab olingan yillar 2023
inLibrary
Google Scholar
Chiqarish:
Bilim sohasi
  • Andijan State University Faculty of Physics, Mathematics and IT 2nd-year student of Mathematics
f
3-7

Кўчирилди

Кўчирилганлиги хақида маълумот йук.
Ulashish
Kobiljonov, . M. (2025). METHODOLOGY OF SOLVING OLYMPIAD PROBLEMS USING INTEGRAL TECHNIQUES. International Journal of Artificial Intelligence, 1(7), 3–7. Retrieved from https://www.inlibrary.uz/index.php/ijai/article/view/136330
Crossref
Сrossref
Scopus
Scopus

Annotasiya

This article presents a detailed analysis of two advanced problems located at the intersection of mathematical analysis and linear algebra. The first problem,demonstrates the integration of a logarithmic function with a rational expression, solved using series expansion techniques. The second problem involves the integration of a matrix-valued cosine function under the Gaussian kernel, offering an approach to operator-valued functions and matrix analysis. Both problems are designed to enhance students’ theoretical knowledge, logical reasoning, and familiarity with competition-level mathematical problem-solving. The article serves as a methodological guide for gifted learners aiming to deepen their understanding of advanced mathematical concepts.


background image

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 09,2025

Journal:

https://www.academicpublishers.org/journals/index.php/ijai

page 3

METHODOLOGY OF SOLVING OLYMPIAD PROBLEMS USING INTEGRAL

TECHNIQUES

Qobiljonov Muhriddin Murodjon ugli

Andijan State University

Faculty of Physics, Mathematics and IT

2nd-year student of Mathematics

Abstract:

This article presents a detailed analysis of two advanced problems located at the

intersection of mathematical analysis and linear algebra. The first problem,demonstrates the

integration of a logarithmic function with a rational expression, solved using series expansion

techniques. The second problem involves the integration of a matrix-valued cosine function

under the Gaussian kernel, offering an approach to operator-valued functions and matrix

analysis. Both problems are designed to enhance students’ theoretical knowledge, logical

reasoning, and familiarity with competition-level mathematical problem-solving. The article

serves as a methodological guide for gifted learners aiming to deepen their understanding of

advanced mathematical concepts.

Аннотация:

В данной статье проводится подробный анализ двух сложных задач,

находящихся на пересечении математического анализа и линейной алгебры. Первая

задачапредставляет собой интеграл логарифмической функции, делённой на

рациональное выражение, и решается методом разложения в ряд. Вторая задача

рассматривает интеграл от матричной косинус-функции с аргументом, зависящим от

переменной, под ядром Гаусса. Обе задачи направлены на развитие у студентов

теоретических знаний, аналитического мышления и навыков решения олимпиадных

задач. Статья ориентирована на одарённых учащихся, стремящихся к глубокому

изучению математики.

Keywords:

Mathematical analysis, definite integral, logarithmic function, matrix-valued

function, linear algebra, operator functions, olympiad problems, methodological approach,

series expansion, analytical solution.

Ключевые слова:

Математический анализ, определённый интеграл, логарифмическая

функция, матричная функция, линейная алгебра, операторные функции, олимпиадные

задачи, методический подход, разложение в ряд, аналитическое решение.

Introduction:

Mathematical analysis and linear algebra are core branches of mathematics that encompass a

wide range of complex yet fundamental problems. In particular, the theory of real-valued

functions, definite integration, and matrix operators are central to many modern theoretical

studies. This article focuses on two challenging problems that lie at the intersection of these

fields, both selected from high-level mathematical olympiads. Through detailed analysis and

exploration of solution strategies, the work aims to develop students’ abilities in independent

reasoning, applying formulas, and approaching unconventional mathematical problems with a

scientific mindset.


background image

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 09,2025

Journal:

https://www.academicpublishers.org/journals/index.php/ijai

page 4

Введение:

Математический анализ и линейная алгебра являются важнейшими разделами

математики, включающими множество сложных, но фундаментальных задач. Особенно

актуальны в современной науке такие направления, как теория функций действительного

переменного, определённые интегралы и матричные операторы. В данной статье

рассматриваются две сложные задачи олимпиадного уровня, объединяющие указанные

направления. Путём их подробного анализа и пошагового решения автор стремится

сформировать у студентов навыки самостоятельного мышления, грамотного применения

формул и научного подхода к нестандартным математическим задачам.

Calculate

:

I=

0

e

x

2

cos

0

x x

0 0

x

0 0 0

dx

Solution

:

To solve the given example, we use the Maclaurin series expansion of the cosx function:

f x ~f x +

f

'

x

1! x+

f

''

x

2! x

2

+

f

'''

x

3! x

3

+…+

f

n

x

n! x

n

cosx=1−

x

2

2! +

x

4

4! −

x

6

6! +

x

8

8! −

x

10

10! +…+

−1

n

x

2

n

2

n ! +…

cos

x =

n

=0

−1

n

x

2

n

2

n !

If we take

A=

0

x x

0 0

x

0 0 0

and replace x with A, it is not difficult to see that

A

0

=

I

3

.(I-unit

matrix)

A

2

=

AA=

0

x x

0 0

x

0 0 0

0

x x

0 0

x

0 0 0

=

0 0

x

2

0 0 0

0 0 0

A

4

=

A

2

A

2

=

0 0

x

2

0 0 0

0 0 0

0 0

x

2

0 0 0

0 0 0

=

0 0 0

0 0 0

0 0 0

A

4

=

A

6

=

A

8

=…=

A

2

n

=

O

3

O

3

zero matrix .

So,

cos

A =I

3

1
2 A

2

=

1 0 0

0 1 0

0 0 1

1
2

0 0

x

2

0 0 0

0 0 0

=

1 0 −

x

2

2

0 1

0

0 0

1


background image

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 09,2025

Journal:

https://www.academicpublishers.org/journals/index.php/ijai

page 5

it follows that.

� =

0

−�

2

���

0 � �

0 0 �

0 0 0

�� =

0

−�

2

1 0 −

2

2

0 1

0

0 0

1

�� =

=

0

−�

2

0

2

−�

2

2

0

−�

2

0

0

0

−�

2

�� =

0

−�

2

0

0

2

−�

2

2

0

0

−�

2

0

0

0

0

−�

2

1.

The

last

obtained

integrals

are

calculated:

0

e

x

2

dx=

x

2

=

t

x=t

1

2

dx=

1
2

t

1

2

dt

x=0 in t=0

x=∞ in t=∞

=

0

∞ 1

2

t

1

2

e

t

dt=

Г

1

2

2

=

π

2

2.

0

− �

2

−�

2

�� =

2

= �

� = �

1

2

�� =

1
2

1

2

��

� = 0 �� � = 0

� = ∞ �� � = ∞

=−

0

∞ 1

2

1

2

−�

�� =−

Г

3

2

2

=

1
2

Г

1
2

+ 1 =−

1
2

1
2

Г

1
2

=−

4

If we rely on the last obtained results,

I=

0

e

x

2

cos

0

x x

0 0

x

0 0 0

dx =

π

2

0 −

π

8

0

π

2

0

0

0

π

2

=

π

2

1 0 −

1
4

0 1

0

0 0

1

it follows that.

Answer:

I=

0

e

x

2

cos

0

x x

0 0

x

0 0 0

dx =

π

2

1 0 −

1
4

0 1

0

0 0

1

Calculate:


background image

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 09,2025

Journal:

https://www.academicpublishers.org/journals/index.php/ijai

page 6

0

1

ln

x+1

x

2

+1

Solution:

x= tan α dx=

1

cos

2

α

we introduce the notation.

0

1

ln

x+1

x

2

+1

=

0

π

4

ln tan

α +1

tan

2

α+1

1

cos

2

α

dα=

0

π

4

ln tan

α +1 dα

α=

π

4

α dx=dα

0

4

ln tan � + 1 �� =

4

0

ln tan


4 − � + 1 −�� =

0

4

ln

tan


4 − tan �

1 + tan

4 tan �

+ 1 ��

=

0

4

ln

1 − tan �
1 + tan � + 1 �� =

0

4

ln

2

1 + tan � �� =

0

4

ln 2�� −

0

4

ln tan � + 1 ��

2

0

π

4

ln tan

α +1 dα =

0

π

4

ln 2

0

π

4

ln tan

α +1 dα =

1
2

0

π

4

ln 2

0

π

4

ln 2

dα = ln 2 α

π

4

0

=

π

4

ln 2

From this,

0

π

4

ln tan

α +1 dα =

π

8

ln 2

it follows that.

Answer:

0

1

ln

x+1

x

2

+1

=

0

π

4

ln tan

α +1 dα =

π
8

ln 2

Conclusion:


background image

INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE

ISSN: 2692-5206, Impact Factor: 12,23

American Academic publishers, volume 05, issue 09,2025

Journal:

https://www.academicpublishers.org/journals/index.php/ijai

page 7

In this article, two complex problems of integral calculus are examined, requiring profound

knowledge of mathematical analysis and linear algebra. The first problem demonstrates the

analysis of a logarithmic expression through series integration, while the second provides new

approaches to working with matrix functions. Both problems serve to develop skills in

Olympiad-level thinking, formula manipulation, and generalization. Furthermore, the article is

structured on a methodological approach, which is of great importance in fostering students’

abilities for deep analysis, independent thinking, and preparation for scientific communication.

References:

1.

Gradshteyn, I. S., Ryzhik, I. M.

Table of Integrals, Series, and Products

. Academic

Press, 2014.

2.

Higham, N. J.

Functions of Matrices: Theory and Computation

. SIAM, 2008.

3.

Hardy, G. H.

A Course of Pure Mathematics

. Cambridge University Press, 1908.

4.

Arfken, G., Weber, H.

Mathematical Methods for Physicists

. Elsevier, 2005.

5.

Putnam Competition Archive – https://kskedlaya.org/putnam-archive/

6.

Nielsen, M. A., Chuang, I. L.

Quantum Computation and Quantum Information

.

Cambridge University Press, 2010.

Bibliografik manbalar

Gradshteyn, I. S., Ryzhik, I. M. Table of Integrals, Series, and Products. Academic Press, 2014.

Higham, N. J. Functions of Matrices: Theory and Computation. SIAM, 2008.

Hardy, G. H. A Course of Pure Mathematics. Cambridge University Press, 1908.

Arfken, G., Weber, H. Mathematical Methods for Physicists. Elsevier, 2005.

Putnam Competition Archive – https://kskedlaya.org/putnam-archive/

Nielsen, M. A., Chuang, I. L. Quantum Computation and Quantum Information. Cambridge University Press, 2010.