

ТЕПЛОПРОВОДНОСТЬ И ЭЛЕКТРОПРОВОДНОСТЬ КОМПОЗИЦИОННЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ, СОДЕРЖАЩИХ МИКРОДИСПЕРСНЫЕ ЧАСТИЦЫ МЕТАЛЛОВ

Боймуратов Фахриддин Тогаймурадович Доцент кафедры фармацевтики и химии, Университет Альфраганус, Узбекистан, Ташкент ORCID: 0000-0003-1703-4605 f.boymuratov@afu.uz https://doi.org/10.5281/zenodo.14700035

Эффект резкого изменения проводимости с температурой, который связан с тепловым расширением композиционных полимерных материалов широко используется в электронной технике: терморезисторы [1], нагревательные элементы [2]. Однако описание основной характеристики таких материалов - зависимость электропроводности (σ) от температуры (T) с учетом теплового расширения материала до сих пор находится на уровне предположений.

Методика изготовления образцов написана в работе [3].

На рис.1 приведены температурные зависимости электропроводности композитов на основе полиамида с объемным содержанием наполнителя молибдена V₁=0,236; 0,238 и 0,240.

Большинство авторов, к примеру [2], придерживаются мнения, что основной причиной характера зависимости $\sigma(T)$ композитов является тепловое расширение матрицы, приводящее к увеличению расстояния между частицами наполнителя, образующие бесконечный кластер (БК). По мере роста температуры происходит изречение БК вплоть до некоторой критической температуры T_k , при которой БК распадается.

В настоящее время, характер изменения структуры бинарных композиционных полимерных материалов в зависимости от объемной доли наполнителя объясняет теория протекания [4].

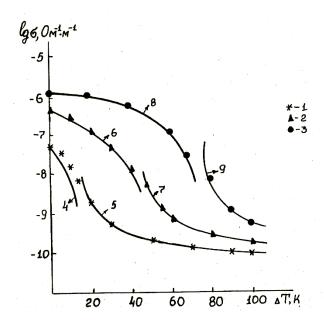


Рис. 1. Экспериментальная зависимость электропроводности композиций от температуры ΔT , для композитов с объемными содержанием наполнителя V_1 =0,236 (1); V_1 =0,238 (2); V_1 =0,240 (3) при T_0 = 293 К. Расчетная зависимость σ (ΔT) по формулам (4) и (5) соответственно для композитов: 4,5 – c V_1 =0,236; 6,7 – c V_1 =0,238; 8,9 - c V_1 =0,240.

Согласно этой теории зависимость σ (V₁) композиционных полимерных материалов с резко различающимися σ описывается следующими формулами:

$$\sigma(V_1) = \sigma_1(V_1 - V_c)/(1 - V_c)^{\mathsf{t}}$$
 при $V_1 \ge V_c$, (1)

$$\sigma(V_1) = \sigma_2 (V_c - V_1 / V_c)^{-q}$$
 при $V_1 < V_c$ (2)

Однако применение этих соотношений в системах претерпевающих фазовый переход металл-диэлектрик при изменении температуры остаются открытым, т.к. еще не удалось найти и увязать объемную долю V_1 наполнителя с температурой $V_1 = V_1(T)$. Считая, что термическое расширение композиции приводит к уменьшению объемной доли наполнителя которое связано с разностью коэффициентов объемного расширения полимера β_2 и наполнителя β_1 . С учетом выше сказанного получена формула для V_1 от T, которая имеет вид

$$V_{1}(\Delta T) = \frac{1}{1 + \frac{1 - V_{01}}{V_{01}} \left(\frac{1 + \beta_{1} \Delta T}{1 + \beta_{2} \Delta T}\right)}$$
(3)

где ΔT - температура измерения,

 $V_1 = V_{01}$ - объемная доля наполнителя при комнатной температуре T=293 (Δ T=0).

Из (3) следует, что при $\beta_1 = \beta_2$ зависимость $\sigma(T)$ определяет БК, т.е. $V_1(\Delta T) = \text{const.}$ С целью выяснения зависимости $\sigma_1(T)$ был проведен эксперимент в камере позволяющий сохранять геометрические размеры образца при изменении температуры. Опыт показывал, что зависимость $\sigma(T)$ в камере фиксированного объема отличается от аналогичной зависимости снятой в обычных условиях: с ростом температуры значение σ непрерывно растет, тогда при нагревании с тепловым расширением образцов уменьшается. Этот факт объяснить нетрудно, если допустить, что при нагревании полимерных электропроводящих композитов имеет место два конкурирующих процесса: уменьшение σ , обусловленный увеличением среднего расстояния между частицами наполнителя, которое учитывает соотношение (3) и увеличение σ за счет увеличения активации тепловой эмиссии электронов в БК который подчиняется зависимости $\sigma_1(T) = A \exp(-\Delta E/T)$.

Таким образом, учитывая выше сказанное и уравнения (1) и (2) получили расчетную зависимость $\sigma(T)$ полимерных электропроводящих композитов, которая имеет вид

$$\sigma(\Delta T) = A \exp\left(-\frac{\Delta E}{k(T_0 + \Delta T)}\right) \left[\frac{V_1(\Delta T) - V_c}{1 - V_c}\right]^t , \quad \Delta T < T_k$$
 (4)

$$\sigma(\Delta T) = \sigma_2 \left(\frac{V_c - V_1(\Delta T)}{V_c} \right)^{-q} \qquad \Delta T > T_k$$
 (5)

где $\,$ А- предэкспоненциальный множитель, $\,$ ΔE - энергия активации, $\,$ k - постоянная Больцмана.

Следует упомянуть, что T_k определяется из равенства $V_1(T) = V_c$. Для исследуемых образцов значения A и ΔE равны 0,6 и $9,72 \cdot 10^{-21}$ Дж, соответственно. Значения величин V_c , t, q взяты из работы [5]. На рис.1 видно удовлетворительное совпадение расчета $\sigma(T)$ при структурных фазовых переходах в электропроводящих композитах. Аналогично были рассмотрены образцы на основе полистирола и полиэтилена. Таким образом формулы (4) и (5) можно использовать при получения композиционных полимерных термодатчиков и нагревательных элементов.

References:

- 1. Дульнев Г.Н., Новиков В.В. Процессы переноса в неоднородных средах. Л., Энергоатомиздат, 1991. С.247.
- 2. Гуль В.Е., Шенфиль Л.З. Электропроводящие полимерные композиции. М.: Химия, 1984. С.240.
- 3. Боймуротов Ф., Даминов А., Абдурахманова М., Карабаева М., Абдурахманов У. Разработка композиционных полимерных нагревательных элементов эффектом самоограничения температуры // Композиционные материалы. 2004. №3. С. 41-43.
- 4. Шкловский Б.И., Эфрос А.Л. Электронные свойства легированных полупроводников М.: Наука, 1979. С.416.
- 5. Зайнутдинов А.Х., Касымов А.А., Магрупов М.А. Экспериментальное исследование изоформизма электропроводности, диэлектрической проницаемости и термо-эдс в композитах, предсказанного теорией протекания //Письма в ЖТФ. 1992. Т. 18., В.2, с 29-32