
REAL TIME LOGO RECOGNITION USING YOLO ON

ANDROID

Primbetov Abbaz1, Saidova Fazilat2, Primbetov Aziz3, and Yembergenova Ulmira4
1,2Tashkent University of Applied Sciences, Gavhar Str. 1, Tashkent 100149, Uzbekistan

3,4Nukus Branch of Tashkent University of Information Technologies Named After Muhammad Al-Khwarizmi, 74, A.

Dosnazarov street, Nukus, Uzbekistan

abbaz0203@mail.ru,aziz2212@mail.ru

https://doi.org/10.5281/zenodo.10471718

Keywords: Object detection, Convolutional Neural Network (CNN), You Only Look Once (YOLO), Faster R-CNN

(Region-based Convolutional Neural Networks).

Abstract: Humans can easily detect and identify objects present in an image. The human visual system is fast and

accurate and can perform complex tasks like identifying multiple objects and detect obstacles with little

conscious thought. For a long time, humans have been trying to make computers understand what is on the

images. With the availability of large amounts of data, faster Graphics Processing Unit (GPU)s, and better

algorithms, we can now easily train computers to detect and classify multiple objects within an image with

high accuracy. The goal of this paper is to implement an object detection model suitable in terms of size and

speed to run on an Android device and detect logos in real-time. The proposed approach is based on YOLOv2

(You Only Look Once) state-of-the-art, real-time object detection for logos and this project used the

FlickrLogos-32 dataset. The experimental results show that we obtained a final accuracy of 82.3% and a speed

of 35 fps (frames per second) on the NVidia GeForce GTX 1070.

1. INTRODUCTION

A logo is a graphical mark used to identify a

company, organization, product or brand. Logos are

used to represent a company’s name, a particular

product or service and are used heavily vin the

marketing of products and services. Logos have

become an integral part of a company’s videntity and

a well-recognized logo can increase a company’s

goodwill. A logo usually has a recognizable and

distinctive graphic design, stylized name or unique

symbol for identifying an organization. It is affixed,

included, or printed on all advertising, buildings,

communications, literature, products, stationery,

vehicles, etc. Logo can be seen anywhere in the

surrounding in our vdaily life, such as in the streets,

supermarkets, on the products or services, on

administrative documents, etc. Examples of different

logos are shown in Figure 1. Logo detection is a

challenging object recognition and classification

problem as there is no clear definition of what

constitutes a logo. A logo can be thought of as an

artistic expression of a brand, it can be either a

(stylized) letter or text, a graphical figure or any

combination of these. Furthermore, some logos

Figure 1: Some figures illustrate that logos

appear everywhere in our surrounding.

mailto:abbaz0203@mail.ru,aziz2212@mail.ru

have a fixed set of colors with known fonts while

others vary a lot in color and specialized unknown

fonts. Additionally, due to the nature of a logo (as

brand identity), there is no guarantee about its context

or placement in an image, in reality logos could

appear on any product, background or advertising

surface. Also, this problem has large intra-class

variations e.g. for a specific brand, there exist various

logos types (old and new Adidas logos, small and big

versions of Nike) and inter-class variations e.g. there

exists logos which belong to different brands but look

similar (see Figure 2).

 Figure 2: Logo variations exemplar images

Left variations of brands Adidas. Notice, different

graphical figures. Right variations of brands Chanel -

Gucci, Vodafone, Target, beats, Bebo and Pinterest.

Notice, similar looking logos but belong to different

brands.

2. RELATED WORK

 The problem of logo recognition itself has a

rich research history. In the 1990’s the problem was

mainly explored in information retrieval use-cases.

An image descriptor was generated using affine

transformations and stored in a database for retrieval.

There were also some neural network-based

approaches but the networks were not as deep nor the

results as impressive as recent work.In the 2000’s,

with the advent of SIFT and related approaches better

image descriptors were possible. This method

provides representations and transformations to

image gradients that are invariant to affine

transformations and robust when facing lighting

conditions and clutter. A Recent initiative in logo

recognition uses deep neural networks, which offer

superior performance with end to end pipeline

automation, i.e. from image and logo identification to

recognition. Multiple methods for object detection

using CNNs have been presented this recent year. The

Region-Based Convolutional Neural Network (R-

CNN) is an architecture that locates and classifies

multiple objects by combining a CNN and an external

region proposal method. A region proposal method is

an algorithm that outputs thea set of regions of

interest, typically defined with bounding boxes. A

commonly used region proposal method is Selective

Search. This algorithm proposes regions of interest by

using similarity measures based on color and visual

features. R-CNN method crops and resize each region

of interest and classifies them using a CNN. The

original architecture uses a CNN with five

convolutional layers and two fully connected layers,

although any CNN classifier can be used.Some more

complex methods for object detection include Fast R-

CNN and Faster R-CNN. Fast R-CNN is a method

based on R-CNN in which the full image is processed

by the convolutional layers and then, regions of the

output of the last convolutional layer are cropped and

classified. The network is formed by a set of

convolutional layers, fully-connected layers, an

external region proposal method (typically Selective

Search) and a Region of Interest (RoI) pooling layer.

The RoI pooling layer applies max-pooling to each

region of interest using a grid of a fixed size (typically

7 × 7).

 Fast R-CNN also introduces a bounding box

regressor, a layer that outputs a fine-tuned location of

bounding boxes. Faster R-CNN is based on Fast R-

CNN but substitutes the external region proposal

methods by a Region Proposal Network (RPN). RPN

is a neural network that generates regions of interest

using the features of the output of the last

convolutional layer. RPN is formed by a 3 × 3 sliding

window that outputs a set of bounding boxes

(typically 9) with different sizes and aspect ratios and

a fully connected layer that assigns a binary class

(foreground or background) to each bounding box.

 Many other object detection algorithms,

including the previous ones described, output several

overlapping bounding boxes. In order to merge them,

the Non-Maximum Suppression (NMS) algorithm is

used. NMS removes a bounding box if it largely

overlaps with another bounding box of the same class

with a higher confidence score. New methods for

object detection based on deep learning are constantly

appearing. Some of them include: Single Shot

Detector (SSD) or You Only Look Once (YOLO) and

YOLOv2. This method typically provides faster

performance than Faster R-CNN but obtains a lower

accuracy. YOLO is a recent, unified CNN based

object detection model, proposed by Joseph et. in

2016. It explores using a single network to predict

both objects' positions and class scores at one time.

The motivation is to reframe the detection problem as

a regression problem, which regresses from the input

image directly to class probabilities and locations.

Benefit from the unified design, YOLO's detection

speed is many times faster than other state-of-the-art

methods .

3. NETWORK ARCHITECTURE

YOLOv2 is an improved version of

YOLOv1 introduced in (Redmon et al. 2016b). We

applied our project with YOLOv2 because compared

to YOLOv1, YOLOv2 is a more accurate and faster

detection method. However, the development team

also came up with a "tiny" variation which is much

smaller than the original. This tiny model-based

implementation is called Tiny YOLOv2. Tiny

YOLOv2 has 11 layers. Out of these 9 are

convolutional and 2 are fully connected. This is much

smaller than the regular model which is perfect for

android. Figure 3 shows the structure of Fast YOLO.

The tiny version is composed of 9 convolution layers

with leaky relu activations. Observe that after 6

maxpool the 446x446 input image becomes a

13x13xD image

Figure 3: The network of YOLOv2

 YOLO divides up the image into a grid of 13

by 13 cells. In object detection, we also have to

predict the location and the shape of an object, not

only classification. Therefore, the output of an object

detection network becomes a little bit complicated. In

our case of YOLOv2, the output is a 3-dimensional

array (or Tensor in TensorFlow). Particularly in

YOLOv2, the shape of output is 13x13xD, where D

varies depending on how many classes of objects we

want to detect (For example D=5 for a single class).

The first 2-dimensional array (13x13) is called grid

cells. So, there are 169 grid cells in total.One grid cell

is ‘responsible’ for detecting 5 bounding boxes, that

is we can detect up to 5 boxes on a grid cell. This

means that the network can detect up to 169 x 5 = 845

boxes at once. This number of bounding boxes a grid

cell can detect is actually the number of Anchor-

Boxes we prepare, and we can change this number to

whatever we want. So, for example, if we want to

detect humans and cars and think that just two

Anchor-Boxes (vertical rectangle for humans, and

horizontal rectangle for cars) are enough to detect

them, then the number 5 above becomes 2. (In the

paper of YOLOv2, this number is denoted as ‘B’).

Figure 4: shows the output of the network for

YOLOv2 looks like this.

Figure 4: The output of the network for YOLOv2

Each grid cell has depth of D. The value of D depends

on the number of classes we want to detect. When we

have C classes of object, D is D=B(5+C) The output

of the network looks like this. There are 13x13 = 169

grid cells in total, and each grid cell can detect up to

B bounding boxes. One bounding box has 5 + C

properties, therefore a grid cell has D = Bx(5+C)

values (this is depth) Tensor=SxSxSx(5+c) In our

case classes number C=30 and B=5

Figure 5: This 13x13 tensor can be considered as a

13x13 grid representing the input image, where each

cell of this tensor will hold the 5 box definitions and

30 class probabilities.

 The input to the network is 416x416x3

image in YOLOv2-tiny. There is no fully connected

layer in it. (Table 1)

Table 1: Details of Network

4. EXPERIMENTAL RESULTS

 In our project we used FlickrLogos-32

dataset. The FlickrLogos-32 dataset contains photos

showing brand logos and is meant for the valuation of

multi-class logo recognition as well as logo retrieval

methods on real-world images. Logos of 32 different

logo classes and 6000 negative images were collected

by downloading them from Flickr. The dataset

includes images, ground truth, annotations (bounding

boxes plus binary masks), evaluation scripts and pre

computed visual features. The dataset FlickrLogos-32

contains photos depicting logos and is meant for the

evaluation of multi-class logo detection/recognition

as well as logo retrieval methods on real-world

images. One of the most time-consuming and costly

processes in constructing the Flickrlogos-32 database

is to annotate logo objects from the collected product

images. For each product image,a logo annotator

needsto identify the logo objects, annotate the

bounding box of each logo object, and then tag it with

the corresponding logo class id. Figure 5 shows

examples of logo object annotation on product

images.

Figure 5: Instruction example of logo object

annotation.The left-hand side is rejected due to too

loose bounding box.

4.1 Metric

mAP (mean Average Precision) is a popular

metric in measuring the accuracy of object detectors

like YOLO, SSD, etc. Average precision computes

the average precision value for recall value over 0 to

1.

Using this criterium, we calculate the precision/recall

curve. Then we compute a version of the measured

precision/recall curve with precision monotonically,

Figure 6: Show us the result of mean average

precision (mAP)

by setting the precision for recall r to the maximum

precision obtained for any recall r' > r. Finally, we

compute the AP as the area under this curve by

numerical integration. No approximation is involved

since the curve is piecewise constant and finally, we

can calculate mean average precision object

detection(mAP), resulting in a mAP value from 0 to

100%

 (Mean average precision) of 82% and it can

track logos very smoothly. In mobile android phones

(Honor 9) we have made the process result as shown

in Figure 12 by conducting a series of experiments,

the quantitative performance measure of logo

detection. Training dark flow and our custom CNN

architecture took an immense amount of time. We

trained our models in batches of 64 in 8 mini-batches.

This allowed us to efficiently train 64 images every

step.

Training on a NVidia GeForce 1070, each

step took 0.5 seconds. This allowed us to train each

model for 2000 epochs, so we can observe the early

stopping point and the weights that gave us the best

accuracies. YOLO’s implementation allowed us to

save our weight files every 10000 steps, so we just let

it continually train overnight so we can scrap the

accuracy in the morning using a script. We have

significant results that show our model works better

with our dataset above with a little less than 2000

epochs. We trained up to 2000 epochs and the

accuracy peaked at epoch 1500. We experimented

with running different learning rates our accuracy

never got any better.

Figure 7. Shows the logo detection through Honor 9.

CONCLUSIONS

 I have trained the model on the FlickrLogos-32

dataset and experiment results to show that YOLOv2

performs very well in real-time logo detection. By

performing a comprehensive analysis of YOLOv2

over FlickrLogos-32 dataset, we found that the

experiment result showed that we managed to achieve

a final mean average precision (mAP) 82.53% and

30-35 FPS (frames per second) speed on an NVIDIA

GeForce Gtx 1070 and our models performed well at

the detection, with very low false-positive rates

possible for a fairly reasonably. The application runs

smoothly on the current test hardware. However, the

main part of the goal was successfully implemented,

a working application that utilizes a neural network

model for object detection.

REFERENCES

[1] [1] Feh´erv´ari, I., Appalaraju, S. (2019, January).
Scalable logo recognition using proxies. In 2019 IEEE
Winter Conference on Applications of Computer
Vision (WACV) (pp. 715-725). IEEE.

[2] [2] Su, Hang, Xiatian Zhu, and Shaogang Gong.
”Open logo detection challenge.” arXiv preprint
arXiv: 1807.01964 (2018).

[3] [3] Oliveira, G., Fraz˜ao, X., Pimentel, A., Ribeiro,
B. (2016, July). Automatic graphic logo detection via
fast region-based convolutional networks. In 2016
International Joint Conference on Neural Networks
(IJCNN) (pp. 985-991).IEEE.

[4] [4] Hoi, S. C., Wu, X., Liu, H., Wu, Y., Wang, H.,
Xue, H., Wu, Q. (2015). Logo-net: Large-scale deep
logo detection and brand recognition with deep region-
based convolutional networks. arXiv preprint arXiv:
1511.02462.

[5] [5] Shafiee, M. J., Chywl, B., Li, F., Wong, A. (2017).
Fast YOLO: A Fast You Only Look Once System for
Real-time Embedded Object Detection in Video.
arXiv: Computer Vision and Pattern Recognition.

[6] [6] Feh´erv´ari, Istv´an, and Srikar Appalaraju.
”Scalable logo recognition using proxies.” 2019 IEEE
Winter Conference on Applications of Computer
Vision (WACV). IEEE, 2019.

[7] [7] Ren, S., He, K., Girshick, R., Sun, J. (2015). Faster
R-CNN: towards real-time object detection with
region proposal networks. Neural information
processing systems.

[8] [8], S., He, K., Girshick, R., Sun, J. (2015). Faster r-
cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems (pp. 91-99).

[9] [9] Le, Viet Phuong. ”Logo detection, recognition and
spotting in context by matching local visual features.”
PhD diss., Universit´e de La Rochelle, 2015.

[10] [10] Eggert, C., Brehm, S., Winschel, A., Zecha, D.
and Lienhart, R., 2017, July. A closer look: Small
object detection in faster R-CNN. In 2017 IEEE
international conference on multimedia and expo
(ICME) (pp. 421-426). IEEE.

