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Abstract: Humans can easily detect and identify objects present in an image. The human visual system is fast and 

accurate and can perform complex tasks like identifying multiple objects and detect obstacles with little 

conscious thought. For a long time, humans have been trying to make computers understand what is on the 

images. With the availability of large amounts of data, faster Graphics Processing Unit (GPU)s, and better 

algorithms, we can now easily train computers to detect and classify multiple objects within an image with 

high accuracy. The goal of this paper is to implement an object detection model suitable in terms of size and 

speed to run on an Android device and detect logos in real-time. The proposed approach is based on YOLOv2 

(You Only Look Once) state-of-the-art, real-time object detection for logos and this project used the 

FlickrLogos-32 dataset. The experimental results show that we obtained a final accuracy of 82.3% and a speed 

of 35 fps (frames per second) on the NVidia GeForce GTX 1070. 

1. INTRODUCTION 

A logo is a graphical mark used to identify a 

company, organization, product or brand. Logos are 

used to represent a company’s name, a particular 

product or service and are used heavily vin the 

marketing of products and services. Logos have 

become an integral part of a company’s videntity and 

a well-recognized logo can increase a company’s 

goodwill. A logo usually has a recognizable and 

distinctive graphic design, stylized name or unique 

symbol for identifying an organization. It is affixed, 

included, or printed on all advertising, buildings, 

communications, literature, products, stationery, 

vehicles, etc. Logo can be seen anywhere in the 

surrounding in our vdaily life, such as in the streets, 

supermarkets, on the products or services, on 

administrative documents, etc. Examples of different 

logos are shown in Figure 1. Logo detection is a 

challenging object recognition and classification 

problem as there is no clear definition of what 

constitutes a logo. A logo can be thought of as an 

artistic expression of a brand, it can be either a 

(stylized) letter or text, a graphical figure or any 

combination of these. Furthermore, some logos  

  
Figure 1: Some figures illustrate that logos 

appear everywhere in our surrounding. 
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have a fixed set of colors with known fonts while 

others vary a lot in color and specialized unknown 

fonts. Additionally, due to the nature of a logo (as 

brand identity), there is no guarantee about its context 

or placement in an image, in reality logos could 

appear on  any product, background or advertising 

surface. Also, this problem has large intra-class 

variations e.g. for a specific brand, there exist various 

logos types (old and new Adidas logos, small and big  

versions of Nike) and inter-class variations e.g. there 

exists logos which belong to different brands  but look 

similar (see Figure 2).  

 
 Figure 2: Logo variations exemplar images 

Left variations of brands Adidas. Notice, different 

graphical figures. Right variations of brands Chanel - 

Gucci, Vodafone, Target, beats, Bebo and Pinterest. 

Notice, similar looking logos but belong to different 

brands. 

2. RELATED WORK 

 The problem of logo recognition itself has a 

rich research history. In the 1990’s the problem was 

mainly explored in information retrieval use-cases. 

An image descriptor was generated using affine 

transformations and stored in a database for retrieval. 

There were also some neural network-based 

approaches but the networks were not as deep nor the 

results as impressive as recent work.In the 2000’s, 

with the advent of SIFT and related approaches better 

image descriptors were possible. This method 

provides representations and transformations to 

image gradients that are invariant to affine 

transformations and robust when facing lighting 

conditions and clutter. A Recent initiative in logo 

recognition uses deep neural networks, which offer 

superior performance with end to end pipeline 

automation, i.e. from image and logo identification to 

recognition. Multiple methods for object detection 

using CNNs have been presented this recent year. The 

Region-Based Convolutional Neural Network (R-

CNN) is an architecture that locates and classifies 

multiple objects by combining a CNN and an external 

region proposal method. A region proposal method is 

an algorithm that outputs thea set of regions of 

interest, typically defined with bounding boxes. A 

commonly used region proposal method is Selective 

Search. This algorithm proposes regions of interest by 

using similarity measures based on color and visual 

features. R-CNN method crops and resize each region 

of interest and classifies them using a CNN. The 

original architecture uses a CNN with five 

convolutional layers and two fully connected layers, 

although any CNN classifier can be used.Some more 

complex methods for object detection include Fast R-

CNN and Faster R-CNN. Fast R-CNN is a method 

based on R-CNN in which the full image is processed 

by the convolutional layers and then, regions of the 

output of the last convolutional layer are cropped and 

classified. The network is formed by a set of 

convolutional layers, fully-connected layers, an 

external region proposal method (typically Selective 

Search) and a Region of Interest (RoI) pooling layer. 

The RoI pooling layer applies max-pooling to each 

region of interest using a grid of a fixed size (typically 

7 × 7). 

 Fast R-CNN also introduces a bounding box 

regressor, a layer that outputs a fine-tuned location of 

bounding boxes. Faster R-CNN is based on Fast R-

CNN but substitutes the external region proposal 

methods by a Region Proposal Network (RPN). RPN 

is a neural network that generates regions of interest 

using the features of the output of the last 

convolutional layer. RPN is formed by a 3 × 3 sliding 

window that outputs a set of bounding boxes 

(typically 9) with different sizes and aspect ratios and 

a fully connected layer that assigns a binary class 

(foreground or background) to each bounding box. 

 Many other object detection algorithms, 

including the previous ones described, output several 

overlapping bounding boxes. In order to merge them, 

the Non-Maximum Suppression (NMS) algorithm is 

used. NMS removes a bounding box if it largely 

overlaps with another bounding box of the same class 

with a higher confidence score. New methods for 

object detection based on deep learning are constantly 

appearing. Some of them include: Single Shot 

Detector (SSD) or You Only Look Once (YOLO) and 

YOLOv2. This method typically provides faster 

performance than Faster R-CNN but obtains a lower 

accuracy. YOLO is a recent, unified CNN based 



 

object detection model, proposed by Joseph et. in 

2016. It explores using a single network to predict 

both objects' positions and class scores at one time. 

The motivation is to reframe the detection problem as 

a regression problem, which regresses from the input 

image directly to class probabilities and locations. 

Benefit from the unified design, YOLO's detection 

speed is many times faster than other state-of-the-art 

methods . 

3. NETWORK ARCHITECTURE 

YOLOv2 is an improved version of 

YOLOv1 introduced in (Redmon et al. 2016b). We 

applied our project with YOLOv2 because compared 

to YOLOv1, YOLOv2 is a more accurate and faster 

detection method. However, the development team 

also came up with a "tiny" variation which is much 

smaller than the original. This tiny model-based 

implementation is called Tiny YOLOv2. Tiny 

YOLOv2 has 11 layers. Out of these 9 are 

convolutional and 2 are fully connected. This is much 

smaller than the regular model which is perfect for 

android. Figure 3 shows the structure of Fast YOLO. 

The tiny version is composed of 9 convolution layers 

with leaky relu activations. Observe that after 6 

maxpool the 446x446 input image becomes a 

13x13xD image 

Figure 3: The network of YOLOv2 

 YOLO divides up the image into a grid of 13 

by 13 cells. In object detection, we also have to 

predict the location and the shape of an object, not 

only classification. Therefore, the output of an object 

detection network becomes a little bit complicated. In 

our case of YOLOv2, the output is a 3-dimensional 

array (or Tensor in TensorFlow). Particularly in 

YOLOv2, the shape of output is  13x13xD, where D 

varies depending on how many classes of objects we 

want to detect (For example D=5 for a single class). 

The first 2-dimensional array (13x13) is called grid 

cells. So, there are 169 grid cells in total.One grid cell 

is ‘responsible’ for detecting 5 bounding boxes, that 

is we can detect up to 5 boxes on a grid cell. This 

means that the network can detect up to 169 x 5 = 845 

boxes at once. This number of bounding boxes a grid 

cell can detect is actually the number of Anchor-

Boxes we prepare, and we can change this number to 

whatever we want. So, for example, if we want to 

detect humans and cars and think that just two 

Anchor-Boxes (vertical rectangle for humans, and 

horizontal rectangle for cars) are enough to detect 

them, then the number 5 above becomes 2. (In the 

paper of YOLOv2, this number is denoted as ‘B’). 

Figure 4: shows the output of the network for 

YOLOv2 looks like this. 

 

 

 

 

 

Figure 4: The output of the network for YOLOv2 

Each grid cell has depth of D. The value of D depends 

on the number of classes we want to detect. When we 

have C classes of object, D is D=B(5+C)  The output 

of the network looks like this. There are 13x13 = 169 

grid cells in total, and  each grid cell can detect up to 

B bounding boxes. One bounding box has 5 + C 

properties, therefore a grid cell has D = Bx(5+C) 

values (this is depth) Tensor=SxSxSx(5+c) In our 

case classes number C=30 and B=5 

Figure 5: This 13x13 tensor can be considered as a 

13x13 grid representing the input image, where each 



 

cell of this tensor will hold the 5 box definitions and 

30 class probabilities.  

 The input to the network is 416x416x3 

image in YOLOv2-tiny. There is no fully connected 

layer in it. (Table 1) 

 

 

 

 

 

 

Table 1: Details of Network 

4. EXPERIMENTAL RESULTS 

 

 In our project we used FlickrLogos-32 

dataset. The FlickrLogos-32 dataset contains photos 

showing brand logos and is meant for the valuation of 

multi-class logo recognition as well as  logo retrieval 

methods on real-world images. Logos of 32 different 

logo classes and 6000 negative images were collected 

by downloading them from Flickr. The dataset 

includes images, ground truth, annotations (bounding 

boxes plus binary masks), evaluation scripts and pre 

computed visual features. The dataset FlickrLogos-32 

contains photos depicting logos and is meant for the 

evaluation of multi-class logo detection/recognition 

as well as logo retrieval methods on real-world 

images. One of the most time-consuming and costly 

processes in constructing the Flickrlogos-32 database 

is to annotate logo objects from the collected product 

images. For each product image,a logo annotator 

needsto identify the logo objects, annotate the 

bounding box of each logo object, and then tag it with 

the corresponding logo class id. Figure 5 shows 

examples of logo object annotation on product 

images. 

 

Figure 5: Instruction example of logo object 

annotation.The left-hand side is rejected due to too 

loose bounding box. 

4.1 Metric 

mAP (mean Average Precision) is a popular 

metric in measuring the accuracy of object detectors 

like YOLO, SSD, etc. Average precision computes 

the average precision value for recall value over 0 to 

1. 

Using this criterium, we calculate the precision/recall 

curve. Then we compute a version of the measured 

precision/recall curve with precision monotonically,  

Figure 6: Show us the result of mean average 

precision (mAP) 

by setting the precision for  recall r to the maximum 

precision obtained for any recall r' > r. Finally, we 

compute the AP as the area under this curve by 

numerical integration. No approximation is involved 

since the curve  is piecewise constant and finally, we 

can calculate mean average precision object  

detection(mAP), resulting in a mAP value from 0 to 

100% 

 (Mean average precision) of 82% and it can 

track logos very smoothly.  In mobile android phones 



 

(Honor 9) we have made the process result as shown 

in Figure 12 by conducting a series of experiments, 

the quantitative performance measure of logo 

detection. Training dark flow and our custom CNN 

architecture took an immense amount of time.  We 

trained our models in batches of 64 in 8 mini-batches.  

This allowed us to efficiently train 64 images every 

step. 

Training on a NVidia GeForce 1070, each 

step took 0.5 seconds.  This allowed us to train each 

model for 2000 epochs, so we can observe the early 

stopping point and the weights that gave us the best 

accuracies. YOLO’s implementation allowed us to 

save our weight files every 10000 steps, so we just let 

it continually train overnight so we can scrap the 

accuracy in the morning using a script.  We have 

significant results that show our model works better 

with our dataset above with a little less than 2000 

epochs. We trained up to 2000 epochs and the 

accuracy peaked at epoch 1500. We experimented 

with running different learning rates our accuracy 

never got any better. 

 
Figure 7. Shows the logo detection through Honor 9. 

CONCLUSIONS 

 I have trained the model on the FlickrLogos-32 

dataset and experiment results to show that YOLOv2 

performs very well in real-time logo detection.  By 

performing a comprehensive analysis of YOLOv2 

over FlickrLogos-32 dataset, we found that the 

experiment result showed that we managed to achieve 

a final mean average precision (mAP) 82.53% and 

30-35 FPS (frames per second) speed on an NVIDIA 

GeForce Gtx 1070 and our models performed well at 

the detection, with very low false-positive rates 

possible for a fairly reasonably.  The application runs 

smoothly on the current test hardware.  However, the 

main part of the goal was successfully implemented, 

a working application that utilizes a neural network 

model for object detection. 
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