Хамидова С.Х., Мустафаева Ф.А., Якубов Ш.Н., Ибодов Б., Мирахмедова С.С.

ИЗУЧЕНИЕ КУЛЬТУРАЛЬНЫХ ПРИЗНАКОВ И ЦЕЛЛЮЛАЗНОЙ АКТИВНОСТИ НЕКОТОРЫХ ВИДОВ ГРИБОВ РОДА TRICHODERMA

Бухарский государственный медицинский институт

Проблема выделения и внедрения в практику новых высокоактивных штаммов микроорганизмов-продуцентов целлюлозолитических ферментов весьма актуальна. Одной из основных сфер практического применения целлюлозолитических ферментов является кормопроизводство. Силос из отходов растениеводства с использованием ферментной массы ,позволяет получить полноценный корм, содержащий в достаточном количестве белки, витамины, аминокислоты. Имеющиеся в литературе данные показывают, что наиболее активные продуценты целлюлозолитических ферментов встречаются среди грибов.

Задача наших исследований заключалась в выделении из природных источников новых целлюлозолитических активных штаммов, определении их родовой и видовой принадлежности и изучении их цитоморфологических особенностей.

Грибы продуценты целлюлаз выделяли из почвы и гниющих растительных остатков. Все штаммы подвергались исследованию после проверки их целлюлозолитической активности. При определении родовой и видовой принадлежности использовали соответствующие определители. Изучениекультуральных свойств исследуемых грибов проводили в динамике гигантских колониях выращенных на среде Чапека и сусло-агаре при температуре 28-30 градусов.

Определение целлюлозотической активности гриба проводили по видоизменной методике Mandels. Для получения целлюлозолитических ферментов микроорганизмы - продуценты выращивали в глубинных и поверхностных условиях. В глубинных условиях культивирования грибы выращивали в колбах Эрленмейера объемом 500 мл со 100 мл среды Mandels

В течение 3 суток. Поверхностное культивирование проводили на среде, состоящей из равных частей соломы и отрубей. Активность целлюлаз определяли в 10% водной вытяжке 2-х суточной культуры.

Из исследованных образцов почвы и гниющих растительных остатков было выделено 250 культур микроскопических грибов, которые анализировали на способность образовывать целлюлозолитические ферменты. Среди выделенных грибов — продуцентов целлюлозолитических ферментов в доминирующим количестве обнаруживались грибы из рода Trichoderma. Второе места по количеству активных продуцентов целлюлаз занимали грибы родов Aspergillus и Penicillium. Грибы родов Fusariumu Chaetomium проявляли слабую целлюлозо литическую активность. Наиболее активные штаммы грибов в дальнейшем детально изучали.

Как показывают данные, приведденные в таблице 1, все исследованные грибы рода Trichoderma обладали целлюлозолитической активностью, хотя и в разной степени.

Наивысщая целлюлозолитическая активность по отношению к хлопковому волокну при поверхностном способе культивирования отмечена у Trichodermasp.-9 и Trichodermasp.-52. Trichodermasp.-76.

Аналогичные результаты биосинтеза целлюлозолитических ферментов по отношению к хлопковому волокну получены при глубинном способе выращивания. Наилучшая активность фермента, гидролизующего NA-КМЦ при поверхностном выращивании отмечалась у Trichodermasp-112, Trichodermasp-9 и Trichodermasp-205. У грибов Trichodermasp-7, Trichodermasp-

Штаммы грибов рода	Поверхностное культивирова- ние	Глубинное культивирование	
Trichoderma	Активность,ед /г		
	Na-КМЦ хлопковое волокно	Na-КМЦхлопковое волокно	
T.sp9	68 120	6,2 12,3	
T.sp52	56 105	6,0 9.8	
T.sp7	50 28	5,2 3,6	
T.sp76	55 32	4,5 3,0	
T.sp112	70 46	6,6 4,3	
T.sp205	65 85	6,7 4,4	
T.sp40	55 80	6.4 7,6	

ПРОБЛЕМЫ БИОЛОГИИ И МЕДИЦИНЫ 1 (68) 2012

Культуральные признаки грибов рода Trichodermasp9					
Изучаемые признаки	Trichodermasp 9,52	Trichodermasp 112 ,205	Trichodermasp7 и - 76	Trichodermasp 40	
Размер ко- лонии на 3 сутки	Диаметр 14 см	Диаметр 10-12см	Диаметр 8-10 см	Диаметр 10-12 см	
Окраска колоний	Вначале водяни- сто-белые с ко- нидиеобразовани ем изменяются от беловато — зеленого к олив- ково-зеленому	Вначале водянисто- белые с конидиеобразо- ванием. Ярко-зеленые, затем темно-зеленые	Вначале грязно- белые, затем пере- ходят от желто- зеленого к темно зеленому	Окраска колоний изменяются от белого до светло зеленого к темно - зеленому	
Строение колоний	Воздушный ми- целий сильно развитий, рыхло- ватый, пушистый	Вначале развивается мощный гладкий, разветвленный субстратный мицелий, Затем от субстратного мицелия поднимается равномерный ватообразный, воздушный мицелий	Колонии со скуд- ным воздушным мицелием. Середи- на исчезающая, по краям плотная. Ми- целий тонкий ните- видный, прижатий к субстрату	Колонии волокнистые. Мицелий сильно разветвленный, образует воздушные гифы	

76, Trichodermasp-40 уровень активности NA-КМЦ был значительно ниже. Наиболее высокой активностью ферментов, гидролизующих NA-КМЦ при глубинном культивировании обладали Trichodermasp-205 и Trichodermasp-112.

Значения активности целлюлаз при глубинном способе выращивания были ниже, чем при поверхностном. У наиболее активных штаммов грибов рода Trichoderma изучались – культуральные признаки с целью установления их систематического положения.

Результаты исследований показали, что грибы рода Trichoderma отличаются большой изменчивостью культуральных признаков. Например, по скорости роста колоний их можно разделить на 3 группы: быстрорастущие ,промежуточные и медленнорастущие. Так, из 7-и штаммов грибов наиболее высокой скоростью роста отличались рода Trichodermasp-9,52, промежуточные положение занимали штаммы Trichodermasp-112 и Trichodermasp-205, а грибы Trichodermasp-7 и -76 росли относительно медленно.

Детальное изучение указанных характеристик в соответствии с системой Rifai позволилоотнести выделенные штаммы Trichodermasp—9,52 к Trichoderma Longibrachiatum, Trichodermasp -112, 205 – T.koningii, Trichodermasp - 40 – T.harzianum Trichodermasp -7,76 - T. aureovirde

Таким образом, выделены и определены до вида активные штаммы целлюлозолитическихферментов, установлена способность грибов рода Trichoderma образовывать целлюлозолитические ферменты.

Культивирование полученных штаммов как при глубинном, так и при поверхностном способе культивирования показывает что, новые штаммы вполне технологичны и могут быть использованы как генетически исходный материал для получения промышленных линий продуцентов целлюлаз.

Использованная литература:

- 1. Султанова И.Г., Ташпулатов Ж., Турабова Я.У., Мирзарахимова М. Выделение и отбор микроорганизмов –деструкторов полимерных материалов. Узбекский биологический журнал,1998. №5. С.10-13
- 2. Ташпулатов Ж., Шульман Т.С., Байбаев Б.Г. Онтогенез гибридных культур Trichoderma harzianum-продуцентов целлюлаз и белка. Доклады АН РУ,1999. №1. С. 50-52.
- 3. Рудаков О.Л. Микофильные грибы, их биология и практическое значение», М., 1981. С.157.
- 4. Салина О.А. Ферментативная активность грибов рода Trichoderma Pers: Fr. Науч. достиж. Микробиол. Нар. X-ву. Ч. 1. Вильнюс, 1988. С. 105-108.
- 5. Rifai M.A. A revision of the genus Trichoderma» Mycologia. Papers, 1969, p. 116.