Gamma spectrometers in nuclear medicine

Аннотация

This manuscript discusses the application of radiometry in radiation medicine, focusing on the diverse detectors employed in detecting radiation. The advantages of high-pressure xenon gamma spectrometers developed by МЕРЫ researchers are highlighted, demonstrating their potential superiority in nuclear medicine applications.

Тип источника: Конференции
Годы охвата с 2024
inLibrary
Google Scholar
Выпуск:
  • Самаркандский государственный университет имени Шарофа Рашидова
  • Национальный исследовательский ядерный университет Московский инженерно-физический институт
CC BY f
29-30
67

Скачивания

Данные скачивания пока недоступны.
Поделиться
Xимматов . I., & Улин S. . (2024). Gamma spectrometers in nuclear medicine . Новый Узбекистан: наука, образование и инновации, 1(1), 29–30. извлечено от https://www.inlibrary.uz/index.php/new-uzbekistan/article/view/31774
Crossref
Сrossref
Scopus
Scopus

Аннотация

This manuscript discusses the application of radiometry in radiation medicine, focusing on the diverse detectors employed in detecting radiation. The advantages of high-pressure xenon gamma spectrometers developed by МЕРЫ researchers are highlighted, demonstrating their potential superiority in nuclear medicine applications.


background image

29

qurilmasidir(4-rasm). Yorliqni skanerlaydigan qurilmalar qadoqlangan mahsulotlar haqida
ma’lumot olish imkoniyatini beradi. Bundan tashqari, qurilma tizimdagi ma’lumotlarni yangilash
imkoniyatini beradi. Bu jarayonda yana bir imkoniyatini ko‘rsatib o‘tish lozim. Tayyor
mahsulotlarning har bir qadoqlangan qoplari jo‘natilish oxirida chiquvchi mahsulotlarning
umumiy og‘irligi kam yoki ortiqcha bo‘lishi mumkin. Bu ortiqcha vazn yoki kam vazn oxirgi
versiyada umumiy og‘irlikdagi nomuvofiqlikka olib keladi. Bu muammolarni tizim hal qilib,
qadoqlangan mahsulotlar sonini qo‘shadi yoki olib tashlaydi. Skanerlash jarayoni interaktiv
formatda amalga oshiriladi (3-rasm). Bu ma’lumotlarni tekshirish bilan har bir noyob(unikal)
markalash raqamini ko‘rsatadi. Xulosa qilib: “Farg’onaazot” AJ da ishlab chiqarishga qo‘llangan
maxsulotlarni markirovkalash tizimi, moddiy-texnik ta’minot bo‘limi, savdo bo‘limi, qadoqlash
sexi va tayyor mahsulotlarni jo‘natish ishlari takomillashtirib tizimni avtomatlashtiradi. Tizim
joriy etilgandan so‘ng sanab o‘tilgan bo‘limlarning ish samaradorligi 15 foizga oshdi.

Foydalanilgan adabiyotlar ro‘yxati:

1.

Сандип Лахири РФИД. Руководство по внедрению = Тҳе РФИД Соурcебоок / Дудников

С.. — Москва: Кудис-Пресс, 2007й. — 312.
2.

М.Ферли. РФИД Смарт Лабелс, 2007й.

3.

Мариан Вонг Ми Ван: «Планирование и взаимодействие механизмов «единого окна» в

АСЕАН», 2014й.
4.

http://shtrih-center.ru/state/rfid_systemy_v_rossii.html.

5.

https://cyberleninka.ru/article/n/isledovanie-i-primenenie-tehnologii-rfid-

radiofrequencyidentification
6.

Путилина М.В «РФИД-технологии в продвижении», Проблемы современной

экономики (Новосибирск) 2014й., 1-4.
7.

Белский В. С., Грибоедова Е. С., сарегородсев К. Д., Чичаева А. А. «Безопасност Рфид-

Систем», , Журнал “Интернатионал Жоурнал оф Опен Информатион Течнологиес”,
2021й.
8.

Гудин М., Зайсев В. «Технология рфид: реалии и перспективы», , “Компоненты и

Технологии», 2003й., 1-2.
9.

Багиров А. И. «РФИД-технология автоматизатсии склада», , «Научный журнал»,

2020й., 2-4.
10.

Куликов М. М., Комиссарова М. А., Назарова И. А. «Перспективы исползования

рфид-технологий в России», Вестник Ростовского государственного экономического
университета (РИНХ), ,
2022й., 3-7.

GAMMA SPECTROMETERS IN NUCLEAR MEDICINE

Himmatov I.F.-Samarkand State University named after Sharof Rashidov

Sergey E.Ulin-

National Research Nuclear University MEPhI (Moscow Engineering Physics

Institute)

Abstract:

This manuscript discusses the application of radiometry in radiation medicine,

focusing on the diverse detectors employed in detecting radiation. The advantages of high-
pressure xenon gamma spectrometers developed by MEPhI researchers are highlighted,
demonstrating their potential superiority in nuclear medicine applications.

Keywords:

Gamma spectrometers, radiation medicine, xenon gamma spectrometers,

energy resolution.

In nuclear medicine, radiometry methods are utilized to measure the intensity of ionizing

radiation traversing a patient's div, discern its energy spectrum, and generate a dynamic three-
dimensional image. Radionuclide medicine employs radiometry for tasks such as qualitative and
quantitative analyses of radionuclides either in a sample (in vitro) or within the patient's div (in
vivo). This includes monitoring shifts in the quality and quantity of radiopharmaceuticals during
certain medical processes, mapping a three-dimensional radiation field around the patient, and


background image

30

pinpointing the coordinates of radiation sources in the div at specific moments. Such
reconstructions aim to base diagnoses on the resultant images.

In radiation and nuclear medicine, an array of detectors is utilized for diverse

applications. Among these are ionization chambers, proportional counters, Geiger-Muller
counters, scintillation counters, Cherenkov counters, and other specialized detectors. Each type
of detector is tailored to detect specific radiation types, including α and β particles, X-rays, γ
radiation, neutrons, protons, and other forms of radiation, across a wide energy spectrum. The
choice of detector depends on factors such as the radiation type, energy range, sensitivity, and
spatial resolution required for a particular application. Advancements in detector technology
continue to enhance their capabilities and expand their utility in radiation detection and
measurement across various fields of science and medicine. Detector requirements encompass
particle identification and discernment of its kinematic attributes (like energy and momentum)
and its generation rate. Essential detector attributes include efficiency (probability of registering
a particle upon impact), temporal resolution (minimum time for distinguishing two particles),
and recovery time (duration post-registration when the detector cannot record another particle or
has compromised functionality). If the energy and/or coordinates of a particle are determined by
the detector, it's further characterized by energy and spatial resolution. Currently, the following
detectors are predominantly used for registering gamma radiation in the energy range of (0.01 -
5) MeV: scintillators, HPGe-based semiconductor detectors requiring cooling, semiconductor
detectors without cooling, and detectors filled with inert gases. The choice is influenced by the
experiment's objective and conditions, considering spectrometer parameters like energy
resolution, efficiency, stability, and adaptability to various conditions [2].

The

xenon gamma

spectrometers

developed by the National Research Nuclear University MEPhI. The spectrometer

boasts a 1.7 % energy resolution for a 662 keV γ-ray, notably superior to NaI or CsI-based
scintillation gamma detectors. This xenon-based spectrometer can measure γ-rays in an energy
spectrum from 0.05 to 3 MeV

[3].

Scintillation gamma spectrometers are prevalently employed in nuclear medicine, despite

their limited energy resolution. Semiconductor gamma spectrometers, while offering better
energy resolution, are less convenient due to their cooling requirements. Compressed xenon
gamma spectrometers now deliver room-temperature energy resolution far superior to NaI(Tl),
and their ionization energy ensures stability across a wide temperature spectrum. These
detectors, immune to issues linked with crystallographic defects, including radiation damage, can
adopt diverse geometries. The high-pressure xenon gamma spectrometer, developed by MEPhI
researchers, outperforms other spectrometers in efficiency and energy resolution and can be
custom-sized. In a spectrum of energy resolutions for gamma spectrometers, the high-pressure
xenon variant sits between semiconductor and scintillation spectrometers.

Conclusion.

While scintillation spectrometers have been the standard in nuclear

medicine, the xenon gamma spectrometer presents a compelling alternative due to its superior
performance characteristics. With higher energy resolution, improved efficiency, and greater
reliability, xenon gamma spectrometers offer enhanced capabilities for precise and reliable data
collection in various nuclear medicine applications. As technology continues to advance, the
adoption of xenon gamma spectrometers is poised to play a significant role in advancing research
and clinical practice in nuclear medicine.

REFERENCES

1.

Beckman I.N. Lecture course. "Nuclear Medicine". – 2005

2.

Alexander S. Novikov, Sergey E. Ulin, Valery V. Dmitrenko, Irina V.Chernysheva, Victor M.

Grachev, Kira V. Krivova, Alexander E. Shustov, Ziyaetdin M. Uteshev, Konstantin F. Vlasik,
"Xenon gamma-ray spectrometers: development and applications," Proc. SPIE 11114, Hard
XRay, Gamma-Ray, and Neutron Detector Physics XXI, 111140H (9 September 2019);

3.

S. N. Pya, K. F. Vlasik, V. M. Grachev, V. V. Dmitrenko, A. S. Novikov, D. V. Petrenko, A.

E. Shustov, Z. M. Uteshev, S. E. Ulin, and I. V. Chernysheva Simulation of the Xenon Gamma
Spectrometer for Analyzing Radioactive Materials Vol. 41, No. 9, 2014

Библиографические ссылки

Beckman LN. Lecture course. "Nuclear Medicine". - 2005

Alexander S. Novikov, Sergey E. Ulin, Valery V. Dmitrenko, Irina V.Chernysheva, Victor M. Grachev, Kira V. Krivova, Alexander E. Shustov, Ziyaetdin M. Uteshev, Konstantin F. Vlasik, "Xenon gamma-ray spectrometers: development and applications," Proc. SPIE 11114, Hard XRay, Gamma-Ray, and Neutron Detector Physics XXI, 111140H (9 September 2019);

S. N. Pya, K. F. Vlasik, V. M. Grachev, V. V. Dmitrenko, A. S. Novikov, D. V. Petrenko, A. E. Shustov, Z. M. Uteshev, S. E. Ulin, and I. V. Chernysheva Simulation of the Xenon Gamma Spectrometer for Analyzing Radioactive Materials Vol. 41, No. 9, 2014