

- 22. Mirzarakhimova K.R. Nurmamatova O. Ch, Turakhonova EM. South Asian Journal of Marketing & Management Research (SAJMMR) https://saarj.com82-89 6em 10.5958/2249-877X 2020.00074.0
- 23. D.A. Kasimova, K.R. MirzarahimovaFactorof diet in the development and prevention congenital anomalies TA-nabedrennik joints. Muharrir the Minbariuu VA Etisalat
- 24. Mirzarahimova K. R. Electromyography as a method functional diagnosis dental anomalies III international youth scientific-practical forum "Medicine the future: from development to application" dedicated 75th anniversary Orenburg state medical University>. 508 article.
- 25. Mirzarakhimova K. R. Congenital dent facial anomalies. I- international scientific-practical Internet conference "Actual questions medical science in XXI century>" 219-223 St
- 26. Mirzarahimova K. R. To learn statistics congenital dental anomalies I- international scientific-prac-

- tical Internet conference "Actual questions medical science inXXIcentury" 152-157cm
- 27. Mirzarahimova K. R. Nurmamatova K. CH, The prevalence dental diseases mouth among pregnant women. 'ACTUAL PROBLEMS OF MODERN DENTISTRY" Samarkand medical Institute, 2017
- 28. Mirzarahimova K. R, Nurmamatova K. CH, the question on the prevalence functional disorders dental system in children, XII International (XXI All-Russian)Pirogov scientific medical conference students and young scientists Moscow, 2017120 c
- Abdurashitova Sh. NurmamatovaK.Ch A...Primenenieproekt nogoobucheniya priprovedenii prakticheskix zanyatiy obshchestvennomu po zdorovyuiupravleniyuzdravooxraneniem//Vestnik Naukii Tvorchestva. №3. 2016. URL:https:// cvberleninka. ruarticle n primenenieproektnogo-obucheniya-pri-provedeniiprakticheskihzanyatiy-po-obschestvennomuzdorovyu-i-upravleniyuzdravoohraneniem/viewer

УДК: 616.71 -008]-504.064.36

СОВРЕМЕННЫЕ МЕТОДЫ МОНИТОРИНГА ОСТЕОИНТЕГРАЦИИ

Б. Пулатов, Н.М. Алиева, М.У. Дадабаева

Ташкентский государственный стоматологический институт

Мониторинг остеоинтеграции имеет принципиальное значение не только в период

приживления имплантата и определения критериев для передачи пациента на ортопедический этап лечения, но необходим и в динамике наблюдения при дальнейшей эксплуатации ортопедической конструкции. Суммируя многочисленные обоснования и практики, С.С. Серегин (2016) [1] указывает, что наиболее рациональным является трехкратное наблюдение за пациентами с ортопедическими конструкциями с опорой на внутрикостные имплантаты в течение первого года после их установки (например, через 3, 6 и 12 мес.), а в дальнейшем - ежегодная диспансеризация. Эти осмотры должны включать элементы клинико-гигиенического и рентгенологического контроля, а также, по возможности, сеансы профессиональной гигиены полости рта. В то же время, автор не отрицает, что сроки и методики обследования могут зависеть от состояния органов полости рта и уровня гигиены, а также от общего состояния здоровья пациента, и это вносит индивидуальные коррективы в план обследования. Следовательно, элементами наблюдения за пациентами с несъемными зубными протезами с опорой на внутрикостные имплантаты во время периодических осмотров должны стать, прежде всего, оценки состояния самого протеза, имплантата и окружающей его костной ткани. Практически все авторы, затрагивающие

в своих исследованиях вопросы гигиенического ухода за полостью рта, подтверждают необходимость периодических сеансов профессиональной гигиены полости рта для ухода за зубами, имплантатами и супраконструкциями, что положительно отражается на сроках использования протезов [2].

РЕЗОНАНСНЫЙ ЧАСТОТНЫЙ АНАЛИЗ

RFA является широко используемым методом оценки первичной стабильности дентальных имплантатов. Результаты RFA количественно отображаются в виде коэффициента стабильности имплантата (ISQ), значения которого могут варьировать от 1 (предельно низкая стабильность) до 100 (высокая стабильность) [3].

Наиболее распространенной в отечественной практике системой для RFA является

«Osstell mentor», в котором используются магнитные штифты типа «Smartpeg», имеющие самые различные винтовые соединения, так что исследование можно проводить со всеми основными системами имплантатов различного производства. Штифт можно обратимо присоединять к имплантату на любом этапе его приживления вплоть до установки ортопедической конструкции, используя обычный динамометрический ключ [4] Стабильность первичного имплантата является ключевым фактором, влияющим на выживаемость этих имплантатов [5]. Она определяется как оцен-

WWW.TSDI.UZ 45

ПРОБЛЕМНЫЕ СТАТЬИ ИОБЗОРЫ

ка клинической подвижности между костью и имплантатом после его размещения.

Качество и количество кости также может повлиять на стабильность первичного имплантата [6]. Leckholm and Zarb [7]. Классифицировали кости на четыре типа, различающихся по структуре и соотношению губчатой и кортикальной кости. Тип 1 кость в основном состоит из плотной кортикальной кости, в то время как тип 4 состоит в основном из рыхлой губчатой кости, второй и третий типы занимают промежуточное положение. Между типом кости по Leckholm and Zarb и первичной стабильностью имплантата были показаны корреляции. Однако такая оценка носит частично субъективный характер, поскольку основана на рентгенографических оценках и тактильных ощущениях хирурга во время процедур остеотомии, поэтому должна применяться с достаточной осторожностью [8]. Значение ISQ в клинической практике было проверено на специально разработанной прогностической модели [9]. Авторы использовали значения ISQ 557 имплантатов двух марок (SICace и Осстем) у 336 пациентов. Измерения проводились сразу после установки имплантата и перед протезированием. В многомерной линейной регрессионной модели были использованы 11 факторов, потенциально влияющих на прогноз: пол, возраст, локализация имплантата, тип костной ткани, немедленная/отсроченная имплантация, отсутствие костной пластики, крутящий момент при постановке, диаметр имплантата и его длина, динамика и продолжительного периода между постановкой имплантата и началом протезирования. Из перечисленных наиболее существенно влияли на значения ISQ потребность в костной пластике и диаметр имплантата (но не его длина), наименее значимыми оказались пол, возраст и тип костной ткани [9]. Другие клинические исследования, напротив, подтверждают взаимосвязь между ISQ и плотностью костной ткани. Считается, что показатель ISQ более информативен для кости типа D1, в то время как при других типах костей ISQ, ио-видимому, не всегда коррелируют с полнотой остеоинтеграции [10]. Поэтому ясно, что изолированное использование RFA не вполне оправдано, и должно постоянно сочетаться с анализом клинической ситуации вокруг имплантата и рентгенологическими критериями остеоинтеграции.

Сходный по природе, но несколько отличный по физической реализации, феномен использован в качестве основы для диагностики с помощью системы «Периотест» (Siemens, Германия). Прибор формирует специфические пьезомеханические импульсы (в течение 4 секунд с частотой 4 Гц), их распространение и отражение фиксируется принимающим устройством прибора, преобразуется в электрические сигналы, которые обрабатывает-

ся встроенной компьютерной программой. Любое изменение тканей в зоне имплантации изменяет характер воспринимаемого сигнала и полученные результаты выдаются исследователю в звуковом виде и в виде цифровой информации на дисплее [11]. Тест на реверсионный торк используется в качестве инструмента в дентальной имплантологии в течение достаточно продолжительного времени. Смысл теста состоит в том, что с помошью специального ключа исследователь устанавливает минимальное значение силы, при которой может быть осуществлено выкручивание имплантата. В исследованиях показана абсолютная безопасность теста реверсионного торка в отношении последующей динамики остеоинтеграции. Наиболее показательны результаты теста для определения сроков первичной остеоинтеграции [12].

Во всех случаях снижения динамики остеоинтеграции или возникновения процессов, снижающих ее степень, результаты ревесионного торка не позволят хирургу считать процесс остеоинтеграции завершенным, и станут противопоказанием к началу ортопедического этапа лечения. Считается, что клиническое ведение пациента до несколько повышенных, в сравнении с первоначально предложенными, значениями до 25-35 н/см² перед присоединением абатмента к имплантату, является профилактической мерой в отношении микробного обсеменения периимплантационной области, если не имеется противопоказаний со стороны производителя имплантатов [13], [14].

Методы лучевой диагностики. Эти методы являются обязательным компонентом диагностического комплекса на этапах наблюдения за пациентами в динамике установки и дальнейшего функционирования несъемные зубных протезов с опорой внутрикостные имплантаты. Динамическое применение этих методов позволяет своевременно выявлять особенности адаптации полости рта, зубов и костной ткани к установленным протезам, а также, что наиболее важно, - прогнозировать высокий риск или своевременно устанавливать начало осложнений, тем самым, повышая качество проводимого лечения. По мнению специалистов, на сегодняшний день, именно рентгенологическая диагностика обеспечивает объективную опенку результатов дентальной имплантации, особенно в части регистрации изменений костной ткани в периимплантатной области [15].

Наиболее распространены в клинической практике ОПТГ и прицельная рентгенография (нередко - в сочетании с денситометрией костной ткани). Менее распространенными в повседневной практике являются мультиспиральная компьютерная томография и конусно-лучевая компьютерная томография, которые позволяют более точно планировать стоматологическую имплантацию и

выявлять сопутствующую патологию, которая может препятствовать успешному лечению [15], [16], [17]. Доступность конусно-лучевой КТ с современным программным обеспечением открывает возможности для прямого перехода к цифровым технологиям изготовления провизорных и постоянных конструкций непосредственно из базы данных обследования пациента. Для этого подключаются CAD/CAM системы для фрезерования и/или 3D печати конструкций с прецессионной точностью изготовления рельефа поверхности в режиме минимализации лучевой нагрузки на пациентов и персонал [18].

К сожалению, эти системы еще далеки от повсеместного внедрения в клиническую практику. Обычные периапикальные рентгенограммы рекомендуется для определения убыли костной ткани в динамике [19; 20; 21], ОПТГ могут также использоваться для диагностики периимплантита [22]. Тем не менее, трехмерные рентгенограммы, в которых можно было бы оценить не только мезиальные и дистальные, но и щечные лингвальные/небные стенки костей, более предпочтительны [23].

Для мониторинга плотности костного ткани и определения эффективности проводимого лечения в настоящее время в клинической практике широко используются самые разные варианты костной денситометрии. Применение оцифровки и компьютерного анализа позволяет при этом значительно снизить радиационную нагрузку на пациентов и медицинский персонал.

Использование цифровых технологий обеспечивает такие безусловные преимущества, возможность создания профессиональных гностических программ, баз данных, выработки индивидуализированных границ нормы в зависимости от пола, возраста и клинической ситуации. Дополнительное значение имеет разработка виртуальных тренажеров и телемедицинских комплексов по консультированию сложных случаев. Все это повышает качество диагностики поздних осложнений дентальной имплантации на системном уровне [24].

Тем не менее, поиск информативных и максимально безопасных методов оценки состояния костной ткани вокруг имплантатов в динамике эксплуатации опирающихся на них протезов, остается весьма серьезной проблемой. Одна из причин этого - высокая вариабельность обмена веществ и, как следствие, плотности костной ткани челюстей даже у практически здоровых лиц [25].

С целью определения рентгенологических критериев убыли костной ткани в области дентальной имплантации [26] провели анализ 89 ОПТГ: 46 без деструктивных процессов в костной ткани челюстей и 43 - с деструктивными процессами. В работе использовался цифровой аппарат Orthophos XG

3 DS с встроенной программой SIDEXIS SIRONA, которая позволяет определять плотность тканей на снимке в каждой отдельной точке (одном пикселе) или выбранного исследователем отрезка. Для мужчин, в зависимости от возраста, были установлены границы нормы плотности костной ткани от 36,0-61,1% в 17-21 лет до 27,6-53,3% после 60 лет; для женщин - от 35,8-65,3% до 27,5- 62,8%, соответственно. При развитии остеорезорбции плотность костной ткани у пациентов клинических групп составляла в переднем отделе нижней челюсти (область резцов) 29,0±7,5%, в заднем отделе (область моляров) - 35,0±7,5%, что достоверно ниже, по сравнению с показателями у лиц без патологии. Следовательно, плотность костной ткани не является строго нормированной, и ее сопоставление с какой-либо нормой требует либо референтной группы, либо введения внутреннего стандарта непосредственно при съемке. При попытке получения стандартов костной плотности на основании совокупных баз данных о 1492 молодых людей из 17 центров, где определение минеральной плотности костной ткани (г/см2) проводилось на рентгено-денситометрах, откалиброванных по единому протоколу European Spine Phantom, Европы, и аналогичных в США были получены весьма интересные результаты. Как оказалось, плотность костной ткани варьирует не только от возраста и пола, но и в существенной степени зависит от этнической принадлежности и места проживания человека. Все этот требует введения серьезных поправочных коэффициентов, которые серьезно затрудняют прямое определение состояния костной ткани при однократном несвязанном исследовании [27]. Тем не менее, потеря костной ткани вокруг имплантатов, даже происходящая в малом объеме и с минимальной скоростью, не может быть устранена полностью. Поэтому минимизация такой потери во времени становится одной из ключевых задач в процессе эксплуатации протеза с опорой на дентальный имплантат. Так, при сравнении потери костной ткани альвеолярных отростков на мезиальной и дистальной поверхности имплантатов, устанавливаемых с помощью одноэтапного или двухэтапного хирургического подхода (310 имплантатов Astra Tech у 140 пациентов), не было выявлено различий между двумя использованными хирургическими техниками. В обеих группах средняя потеря костной ткани, рассчитанная денситометрическим методом с оцифрованных рентгенограмм калиброванного прибора, непосредственно с помощью возможностей Adobe Photoshop CS5, оказалась равной 0,76±0,04 и 0.84 ± 0.04 мм, соответственно [28]. В динамическом наблюдении за судьбой 162 имплантатов (99 на верхней челюсти, 63 - на нижней) с установленными на них несъемными зубными протезами,

<u>WWW.TSDI.UZ</u>

ПРОБЛЕМНЫЕ СТАТЬИ ИОБЗОРЫ

[29] зафиксировали успех в 159 случаях (98,1%), у 3 имплантатов (1,9%) зафиксирована потеря остеоинтеграции вследствие периимплантита, потери ретенции и крепления между абатментом и имплантатом. Авторы связывают хорошие результаты лечения в основном с тщательной рентгенологической оценкой области имплантации в динамике наблюдения за пациентами [29].

Таким образом, следует подчеркнуть, что основным методом мониторинга остеоинтеграции в динамике был и остается рентгенологический контроль прилегающей костной ткани. Он, при

необходимости, может быть дополнен денситометрическим исследование (но имеются трудности в определении границ биологической нормы у конкретного пациента), механическими или радиочастотными методами (имеют свои ограничения по использованию в динамике). Совершенно исследованной областью представляется экспресс-диагностика жидкостей, секретируемых тканями в непосредственной близости к имплантату. В этой области исследования фрагментарны, что является основанием для проведения исследований этого вопроса.

ЛИТЕРАТУРА/REFERENCES

- Серегин С. С. К вопросу о диспансерном наблюдении и оценке результатов имплантации V пациентов с факторами риска // Стоматология. - 2016. -Т.95.№1.-С. 73- 76.
- 2. Утюж А.С, Юмашев А.В., Адмакин О.И., Лутков Р.М. Использование ирригатора у пациентов с ортопедическими конструкциями, опирающимися на дентальные имплантаты // Клиническая стоматология. - 2017. - № 2 (82). - С. 47-49.
 - Green stein G., Cavallaro J. Implant insertion torque: its role in achieving primary stability of restorable dental implants // Compend. Contin. Educ. Dent. 2017. Vol. 38. №2. P. 88-95.

 - Trisi P, De Benedittis .S'. Perfetti G., Berardi D. Primary stability, insertion torque and bone density of cylindric implant ad modum Branemark: is there a relationship? An in vitro study // Clin. Oral Implants Res. 2011. Vol. 22, N_{\odot} 5. P. 567-570.
 - Javed E, Romanos G.E. The role of primary stability for successful immediate loading of dental implants. A literature review // J. Dent. 2010. Vol. 38. №8. -P. 612-620.
- 7. Ribeiro-Rotta R.F., de Oliveira R.C., Dias D.R., et al. Bone tissue microarchitectural characteristics at dental implant sites part 2: correlation with bone classification and primary stability // Clin. Oral Implants Res. 2014 Vol 25, № 2. P. 47-53.
- 8. DegidiM., Daprile G., Piattelli A. Determination of primary stability: a comparison of the surgeon 's perception and objective measurements // Int. J. Oral Maxillofac. Implants. 2010. Vol. 25. № 3.-P. 558-561.
- 9. HuangH.,Xu Z., ShaoX., etal. Multivariate linear regression analysis to identity general factors

- for quantitative predictions of implant stability quotient values PI.oS One. 2017. Vol. 12, № 10. -eO187010.
- Turkyilmaz I, Sennerby I... McGlumphy E.A., Tozum TE Biomechanical aspects of primary implant stability: a human cadaver study // Clin. Implant Dent. Rel. Res. - 2009. - Vol. 11. - P. 113-119.
- 11. Roze J., Babu S., Saffarzadeh A. et al. Correlating implant stability to bone structure // Clin. Oral Implants Res 2009. Vol. 20, №10. P. 1140-1145.
- 12. Арутюнов С.Д., Ерошин В.А., ДжалаловаМ.В. и др. // Оценка прочности крепления дентальных имплантатов методом лазер-торк-теста // Российский стоматологический журнал. 2010.-№ 6. С. 4-6.
- 13. Kwon Y.-S., NamgoongU, Kim J.-U., et al. Effect of microthreads on removal torque and bone-to-implant contact: an experimental study in miniature pigs J. Periodontal Implant Sci. 2013. Vol. 43. № 1.-P. 41-46.
- 14. Di Stefano D.A., Arosio P, Piattelli A., et al. A torque-measuring micromotor provides operator independent measurements marking four different density> areas in maxillae // J. Adv. Prosthodont. 2015."Vol 7, №1. P.51-55.
- 15. СероваН.С. Лучевая диагностика в стоматологической имплантологии Российский электронный журнал лхчевой диагностики. - 2011. /. /. № 1. ' C. 65-66.
- 16. Reeves T.E., Mah P, McDavid W.D. Deriving Hounsfield units using grey levels in cone beam CT: a clinical application // Dentomaxillofac. Radiol. 2012. Vol. 41. № 6.-P. 500-508.
- 17. Shelley A.M., Glenny A.-M., Goodwin M., et al. Conventional radiography and cross-sectional imaging when planning dental implants in the anterior edentulous mandible to support an overdenture: a systematic review // Dentomaxillofac. Radiol. 2014. Vol. 43. № 2. e20130321.

- 18. Greenberg AM. Advanced dental implant placement techniques // J. Istanb. Univ. Fac. Dent. 2017. Vol. 51. №3, Suppl. 1. S76-S89.
- 19. Misch C.E., Perel M.L., WangH.L, etal. Implant success, survival, and failure: the International Congress of Oral Implantologists (ICOI) Pisa Consensus Conference. Implant Dent. 2008. Vol. 17, № 1. P. 5-15.
- 20. Froum S.J., Rosen PS. A proposed classification for peri-implantitis // Int. J. Periodontics Restorative Dent. 2012. Vol. 32, №5. P. 533-540.
- 21. Kadkhodazadeh M., Amid R. Evaluation of periimplant tissue health using a scoring system // JIACD. -2012.- Vol. 4.-P. 51-57.
- 22. Padial-Molina M, Suarez F, Rios HF, Galindo-Moreno P, Wang HL. Guidelines for the diagnosis and treatment of peri-implant diseases. Int J Periodontics Restorative Dent. 2014. Vol. 34, № 6.-P. 102-111.
- 23. The American Academy of Periodontology (AAP).

 Peri-implant mucositis and peri-implantitis: a current understanding of their diagnoses and clinical implications // J. Periodontal. 2013. Vol. 84, № 4. -P. 436-443.
- 24. Бондаренко, Н. Н. Измерение оптической плотности костной ткани альвеолярного отростка челюстей при заболеваниях пародонта

- с помощью трехмер- ной компьютерной томографии И И Бондаренко, Е. В. Балахонцева //Казан, мед. жури. - 2012. - Т. 93, № 4. - С. 660-663.
- 25. Ага-заде А.Р. Определение плотности костной ткани челюстей при дентальной имплантации на основе фотоденситометрии // Соврем, стоматология. 2010. № 1. С. 77-78.
- 26. Николаюк В.И., Кабанова А.А., Карпенко Е.А. Денситометрия в диагностике патологии челюстно-лицевой области // Вестник Витебского государственного медицинского университета. "2015. Т. 14. № 5. С. 114-120.
- 27. Kaptoge S., da Silva J.A., Brixen K., et al. Geographical variation in DXA Bone mineral density: in young European men and women. Results from the Network in Europe on Male Osteoporosis (NEMO) study // Bone. 2008. Vol. 43. №2. -P. 332-339. "
- 28. Gheisari R., Eatemadi H, Alavian A. Comparison of the marginal bone loss in one-stage versus two-stage implant surgery // J Dent. (Shiraz). 2017. Vol. 18. № 4.-P. 272-276.
- 29. Ulkil S.Z., Kaya FA., Uysal E., Gulsun B. Clinical evaluation of complications in implant-supported dentures: A 4-vear retrospective study //Med. Sci. Monit. 2017. Vol. 23. P. 6137-6143.

УДК:616-003.231: [613.471 -612.474.16]:616.152.11

EFFECT OF POOL WATER ON THE PH OF SALIVAIN CHILDREN

Razakova N.B., Abdirimova G.I., Kodirova M.N

Tashkent State Dental Institute

РЕЗЮМЕ

Цель исследования. Механизм влияния воды бассейна на рН слюны.

Материалы и методы. Было проведено исследование pH ротовой полости до визитабассейна и немедленно после занятий плаванием у 70 детей в возрасте от 6 до 15 лет (34 девочки, 36 мальчиков) с использованием лакмусовой бумаги (pH тест) от 1.0 до

Исследование осуществлялось в 2 этапа - в первый день рН воды в бассейне составляло 7,4, был проведен анализ показателя рН у 59 детей (15 девочек, 44 мальчика); во второй день - рН 6,6, участие приняли 70 детей (34 девочки, 36 мальчиков). Занятия в бассейне продолжались в течение 1,5 часов.

Результаты. При исследовании в первый день рН в бассейне составлял 7,4 (слабощелочная среда). При данном у 4 детей (6%) рН осталось на прежнем уровне, у 55 детей (94%) показатель рН отклонился в щелочную сторону. Максимальное изменение рН слюны - 0,9. При осуществлении

оценки рН ротовой полости у детей во 2 день рН в бассейне составлял 6,6 - слабокислая среда. При данному 11 детей (13%) рН осталось на прежнем уровне, у 3 детей (4%) рН отклонилось в щелочную сторону, у 56 (83%) - рН отклонилось в кислую сторону. Не изменилось рН слюны ротовой полости при рН 7,4 у 6% детей, а при рН 6,6 - у 13 %.

Вывод. Ребенку, долгое время пребывающему в бассейне, нужна защита в виде профилактических мер, которые направлены на предупреждениепоявления кариеса, эрозий и зубного камня.

RESUME

Purpose of research. How pool water affects the pH of oral saliva.

Materials and methods. A study of oral pH before swimming and immediately after swimming was conducted in 70 kids aged from 6 to 15 years (by of these ,34 are girls, 36 are boys) use litmus paper (pH test) from 1.0 to 14.0. The study was conducted in second stages - on the first day, the pH there was