Volume 15 Issue 08, August 2025

Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

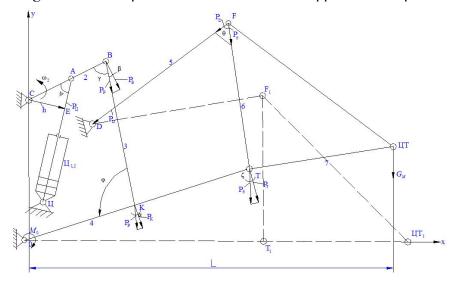
6.995, 2024 7.75

METHOD FOR CALCULATING THE SUSPENSION MECHANISM OF A UNIVERSAL ENERGY VEHICLE

Komilov Mukhriddin Raqibbek ugli,

Assistant, Andijan State Technical University Department of "Transport Engineering"

Abstract: This work is dedicated to calculating the lifting force of the suspension mechanism based on its kinematic diagram. The calculation analyzes two main states of the mechanism: the conditional working state (CWS) and the upper extreme position (U), determining the forces and moments under load step by step. Considering the maximum lifting force in the upper position of the mechanism, the number and type of hydraulic cylinders are selected. This ensures the mechanism's load-bearing capacity (3.5 tons). Additionally, the line of action of the hydraulic cylinder is determined through kinematic analysis.


Keywords: suspension mechanism, kinematic diagram, lifting force, hydraulic cylinder, working position, moment analysis

Introduction. The lifting force of the suspension mechanism is calculated by sequentially determining the forces and moments in the joints of the links for a load applied at a conditional point (center of gravity) in the kinematic diagram (Fig. 1).

In this case, the calculation is performed for two positions of the suspension mechanism: the conditional working position "CWS" (in the horizontal position of the longitudinal rod) and the upper extreme position "U," since in the lower extreme position "L" the applied force arm is relatively small, therefore its lifting force is less than in the previous positions.

The universal power unit is designed for a suspension mechanism with a lifting capacity of 3.5 tons (34.34 kN). Based on the maximum lifting force obtained in two cases, the number and model of hydraulic cylinders to be installed are selected. In this case, the line of action of the hydraulic cylinders is determined through kinematic analysis of the suspension mechanism.

The calculation of the lifting force of the suspension device is performed based on the kinematic diagram of the suspension mechanism for the upper extreme position "B."

Volume 15 Issue 08, August 2025

Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023: 6.995, 2024 7.75

Figure 1. Kinematic diagram of the suspension mechanism

The resistance moment M0 at the O hinge of the OMN longitudinal rod is equal to [17]

$$M_0 = L G_M, (1)$$

where: L - is the load arm $_{of GM}$ relative to the O hinge.

The force Pk applied to point K perpendicular to the segment OK is equal to

$$P_K = \frac{M_0}{OK},\tag{2}$$

KB force Pp acting in the direction of inclination

$$P_{p} = P_{K} \cos \alpha \,, \tag{3}$$

where $\alpha = \varphi$ - 90° is the angle between the KB inclination direction and the perpendicular to the longitudinal tension segment OK.

From the triangle \triangle OBK according to the law of cosines

$$OB^2 = OK^2 + KB^2 - 2 OK KB \cos \varphi$$
,

from this

$$\varphi = \arccos \frac{OK^2 + KB^2 - OB^2}{2 OK KB}$$

Force $_{PB}$ (component of $_{Pp)}$ acting at point B perpendicular to the opposite direction of the turning lever CB

$$P_{B} = P_{p} \cos \beta , \qquad (4)$$

where $\beta=90^{\circ}$ - γ is the angle between the *KB* inclination direction and the perpendicular to the turning lever *CB*; γ is the angle between *KB* inclination and *CB* turning lever where $\beta=900$ - γ - angle between the direction of inclination *KB* and the perpendicular to the turning lever *CB*; From the triangle Δ CBK based on the law of cosines

$$\gamma = \arccos \frac{CB^2 + KB^2 - CK^2}{2 \ CB \ KB}$$

The resistance moment MC at the C hinge of the CB turning lever is determined as follows:

$$M_C = P_B CB. (5)$$

The required lifting force *PP* applied to *point A* of the *CB* turning lever *PP* in the direction of the hydraulic cylinder *force*

$$P_{\Pi} = \frac{M_C}{h},\tag{6}$$

where: h - C is the PP arm relative to the hinge.

 $\triangle CAE$, based on the sine theorem, the following ratio is obtained

$$\frac{CA}{\sin E} = \frac{h}{\sin \psi} \; ,$$

from this

Volume 15 Issue 08, August 2025

Impact factor: 2019: 4.679 2020: 5.015 2021: 5.436, 2022: 5.242, 2023:

6.995, 2024 7.75

(since = 90o),

where ψ - PC is the angle between the direction of force action and the CB turning lever ΔCAC from the triangle according to the cosine theorem

 $h = CA \sin \psi / \sin E = CA \sin \psi$ (чунки $E = 90^{\circ}$),

The force generated by the hydraulic cylinder P_C is determined by the following relationship:

where p_f - pressure of the fluid in the line, MPa; D - cylinder diameter, m.

Based on the maximum lifting force, the number of hydraulic cylinders to be installed n_C is determined:

$$n_{II} = \frac{P_n}{P_{II}} = 1,89 \ . \tag{7}$$

We select two $_{C100}$ hydraulic cylinders for the suspension mechanism, with a total force of $_{2PC100}$ = 264.4 kN, which is PP =232.73 kN Δ PC =13.67 kN (5.87%) greater than the calculated force. Conclusion. Thus, a method for calculating the mounting mechanism of a tractor with increased load capacity has been proposed. Based on this, the force and resistance moments in the hinged joints of the tractor's suspension mechanism links were determined. As a result of the calculations, it was shown that with the help of two C100 hydraulic cylinders, it is possible to lift a load of 3.5 t placed at the conditional point MN of the kinematic scheme of the HOT.

References

- 1. Buryanov A. I., Dmitrenko A. I., Buryanov M. A. Improvement of methods for aggregating mobile energy tools with harvesting and transport-technological modules // Agricultural Engineering Science in the Agro-Industrial Complex: Innovations, Achievements: Collection of scientific papers. Zernograd: SKNIIMESKH, 2012. pp. 191-199.
- 2. Buryanov A. I., Dmitrenko A. I. Directions for improving harvesting processes // Technology and Equipment for Rural Areas. -2010. No. 10. pp. 13-16.
- 3. Buryanov A. I., Dmitrenko A. I., Buryanov M. A. Technological and technical prospects of grain crop harvesting // Agricultural Engineering Science in the Agro-Industrial Complex: Innovations, Achievements: Collection of scientific papers. Zernograd: SKNIIMESKH, 2012. pp. 210-221.
- 4. Patent No. 2146083 Russian Federation, IPC A01D 41/02. Aggregate for crop harvesting / Shurinov V. A., Fedorovich S. A., Mordukhovich A. V. et al. Applicant and patent holder: State Special Design Bureau for the complex of forage harvesting machines of the Production Association "Gomselmash" (BY). Published 10.03.2000.