и способствует определению собственной профессиональной позиции, закрепленной в практической деятельности этнопедагогического содержания.

образом, в современных условиях весьма актуальны международные педагогические исследования в этнопедагогическом ракурсе, поскольку полинациональные страны последовательно и целенаправленно внедряют в свои системы высшего образования этнопедагогическую культуру как один ИЗ важнейших аспектов подготовки квалифицированных кадров.

Литература

- 1. Волков Г. Этнопедагогика. М., 1974.
- 2. Волков Г., Баубекова Г. Этнопедагогика. Т.: Наука, 2000.
- 3. https://www.dissercat.com/content/metodologiya-etnopedagogicheskogo-issledovaniya

STEM-ТЕХНОЛОГИИ КАК ОДНО ИЗ СРЕДСТВ ПРОВЕДЕНИЯ УЧЕБНЫХ ЗАНЯТИЙ В НАЧАЛЬНОЙ ШКОЛЕ

магистр педагогических наук, Богдан Виктор Валерьевич

Гродненский государственный университет имени Янки Купалы bogdan_viktor@bk.ru

Аннотация: в данной статье представлены результаты использования STEMтехнологий в образовательном процессе в начальной школе. Рекомендовано учителям начальных классов и педагогам дополнительного образования.

Ключевые слова: образовательный процесс, начальная школа, учащиеся, STEM-технологии, учебное занятие.

Процесс информатизации затронул практически все сферы современного общества, что видно на примере системы образования. В настоящее время расширилась сфера использования информационных и коммуникационных технологий (ИКТ), а также электронных средств обучения. Информатизация — фактор, способный повысить как качество обучения, так и эффективность труда педагогов.

Интеграция STEM — это один из основных трендов в мировом образовании. Инновационная методика включает в себя изучение математики, технологии, творчества, инженерного искусства и естественных наук. Интегрированный процесс обучения позволяет подготовить востребованных специалистов в сфере инженерии, проектирования и моделирования. [1, с. 8].

Цель исследования: применять STEM-технологии в образовательном процессе начальной школы.

Задачи исследования:

- активизировать интерес к математике;
- приобретение знаний в области техники, робототехники, конструирования;
- развивать творческие способности и коммуникативные навыки;
- способствовать раннему определению потенциала учащегося и его профессионального определения.

Объект исследования: процесс обучения учащихся начальной школы.

Предмет исследования: особенности использования STEM-технологий в образовательном процессе начальной школы.

Актуальность исследования заключается в том, что многие педагоги уделяют недостаточное внимание интегрированному процессу обучения в образовательной практике, ввиду сложной и кропотливой подготовки дидактического материала, поэтому часто снижается интерес к процессу обучения у младших школьников.

Проблема исследования заключается в теоретическом осмыслении педагогами значимости применения STEM-технологий в образовательном процессе начальной школы и выявлении особенностей их использования.

Методы исследования: анализ психолого-педагогической литературы, научное наблюдение по проблеме исследования, изучение нормативных документов, дидактическое

целеполагание, социально-педагогический анализ программ, учебников и учебно-методических пособий, эксперимент.

STEM-образование создает стойкие логические связи между предметами. Учащиеся с трудом решают задачи, требующие междисциплинарного подхода. В сознании обучающегося предметы четко разделены: сейчас занимаемся математикой, а через два урока — историей. Но когда возникает необходимость связать два источника знания воедино (например, подробно рассказать о происхождении арабских цифр), учащийся испытывает затруднение. Также очевиден разрыв между теорией и практикой. STEM-подход направлен на искоренение такого разрыва. Учащийся учится быть всесторонне эрудированным, деятельным, проактивным.

Методика STEM базируется на утверждении, что обычные инженеры не могут двигать науку и экономику вперед. Специалист, который хочет быть успешным в современных реалиях, должен комбинировать и постоянно развивать навыки изобретателя, ученого, менеджера, психолога. Дети ориентируются на свой интеллект и находчивость, чтобы решать конкретные задачи.

В нашем исследовании рассмотрим, каким образом применять STEM-технологии на уроках начальной школы.

На уроке математики в 3 классе при изучении темы умножение учитель начальных классов может применить сразу 3 технологии: визуальная среда программирования SCRATCH, виртуальный тренажер по математике, конструктор LEGO EDUCATION WEDO.

Scratch – это простой и доступный всем в использовании язык программирования. С помощью Scratch у обучающихся появляется возможность развить свой голос, найти вдохновение в работе других и сделать что-то похожее, но свое, выразить свои собственные идеи [2, с. 105]. Проверка знаний с помощью визуальной среды программирования SCRATCH показала, что учащиеся с удовольствием выполняют задания в данной среде, показывают высокие знания при проверке знаний.

Рис. 1 – проверка знаний с помощью SCARTCH

Виртуальный тренажер по математике. Простой и очень нужный учащимся начальной школы и их родителям. В тренажере есть возможность отработать навыки умножения, деления, сложения и вычитания. Преимущества такого тренажера перед печатными: нет необходимости расходовать бумагу и проверять ответы. [5, с. 110].



Рис. 2 – проверка знаний с помощью виртуального тренажера

Перворобот LEGO EDUCATION WEDO – базовый конструктор из робототехнических решений компании LEGO. С его изучения начинается первое знакомство учащихся со сложными программируемыми механизмами. Конструктор Lego Education WeDo содержит детали для воплощения в жизнь проектов, призванных научить младших школьников основам математики, робототехники, построения алгоритмов. Процесс учебы не кажется учащимся скучным, поскольку позволяет строить и программировать в интересном, интерактивном ключе. ЛЕГО – одна из самых известных и распространённых ныне педагогических систем, широкая использующая трёхмерные модели реального мира и предметно-игровую среду обучения и развития учащегося [4, с. 22].

ЗАКЛЮЧЕНИЕ

Наше исследование показало, что интегрирование STEM-технологии в обучении позволяет учащимся получить знания, совместимые с реальностью. Это содействует появлению не узкоинформированных специалистов, которые умеют делать что-то одно, а творческих людей, способных принимать нестандартные решения в своей профессиональной деятельности. Процесс интеграции способствует повышению качества обучения, улучшает мотивацию и познавательную активность. Это создает оптимальные условия для развития гибкости, логичности и, как следствие, содействует гармонизации личности. Прогрессивный подход в обучении помогает получить больше знаний, расширяет и углубляет межпредметные связи, содействует лучшему усвоению азов программирования, моделирования и конструирования. Учащийся учится видеть картину в целом. В последующем все это дает обучающемуся возможность создавать и презентовать свой собственный уникальный продукт, работая в команде. STEM-технологии необходимо применять в учебном процессе на I ступени общего среднего образования.

Литература.

- 1. Абушкин, Д. Б. Педагогический STEM-парк МГПУ / Д.Б. Абушкин // Информатика и образование. ИНФО. 2017. № 10. С. 8-10.
- 2. Винницкий, Ю.А. SCRATCH и ARDUINO для юных программистов и конструкторов / Ю.А. Винницкий, А.Т. Григорьев. СПб.: БХВ-Петербург, 2020. 176 с.: ил.
- 3. Голиков, Д.В. SCRATCH 3 для юных программистов. СПб. : БХВ-Петербург, 2021. $168~\mathrm{c.:}$ ил.
- 4. Емельянова, Е.Н. Интерактивный подход в организации учебного процесса с использованием технологии образовательной робототехники / Е.Н.Емельянова // Педагогическая информатика. 2018. № 1. С. 22-32.
- 5. Плаксина, И.В. Интерактивные образовательные технологии : учеб. пособие / И.В. Плаксина. 2-е изд. испр. и доп. М. : Юрайт, 2018. 163 с.