The financial services industry is transforming batch processing to real-time, AI-driven architectures. This article looks at how the frameworks Apache Kafka and Apache Spark are used as bases for building scalable and low-latency, fault-tolerant data pipelines, meeting the special requirements of the financial sector. These real-time applications include high-frequency trading, fraud detection, compliance monitoring, and customer engagement. They are made possible through these open-source platforms that publicly ingest, process, and make decisions. Integrating cloud-native infrastructure—using Kubernetes, service mesh, and container orchestration—ensures elasticity, security, and regulatory alignment. Large language models (LLMs) are now being entrenched into micro services for decision support, regulatory reporting automation, and the automation of client interactions. The article also contains detailed architectural guidance on how to integrate Kafka and Spark, tips for improving Kafka Spark performance, and best practices around observability and DevSecOps. Real-time stream processing combined with AI-driven analysis serves as a real-world use case for trade surveillance. The future impact of emerging trends such as edge-native computing, federated learning, and decentralized finance is also examined. Strategic recommendations to CTOs and architects for developing secure, AI-native, and future-proof financial systems are presented to close.
Просмотров
Загрузок
hh-index
Цитаты
inLibrary — это научная электронная библиотека, построенная на парадигме открытой науки (Open Science), основными задачами которой является популяризация науки и научной деятельности, общественный контроль качества научных публикаций, развитие междисциплинарных исследований, современного института научной рецензии, повышение цитируемости узбекской науки и построение инфраструктуры знаний.
КОНТАКТЫ:
Республика Узбекистан, г. Ташкент, ул.Паркент 51, этаж 2