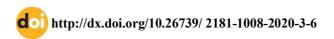
УДК 616-056.52:611.1

Гарифулина Лиля Маратовна


к.м.н., доцент, заведующая кафедрой педиатрии лечебного факультета Самаркандского государственного медицинского института. Самарканд, Узбекистан.

Холмурадова Зилола Эргашевна

ассистент кафедры педиатрии лечебного факультета Самаркандского государственного медицинского института. Самарканд, Узбекистан.

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА У ДЕТЕЙ И ПОДРОСТКОВ ПРИ ОЖИРЕНИИ

For citation: Garifulina Lilya Maratovna, Kholmuradova Zilola Ergashevna Cardiovascular system in children and adolescents with obesity. Journal of hepato-gastroenterology research. 2020, vol. 3, issue 1, pp. 24-27

АННОТАЦИЯ

Обследовано 60 подростков с ожирением. Выявлено, что на развитие гипертрофии миокарда влияют масса тела, уровень АД, процессы вазоконстрикции, а также инсулинорезистентность, гиперурикемия и атерогенная дислипидемия. У части детей выявлен метаболический синдром, что требует терапии данного состояния для предотвращения ранних осложнений и инвалидизации подростков во взрослом периоде.

Ключевые слова: ожирение, артериальная гипертензия, гипертрофия миокарда левого желудочка, подростки, дети.

Garifulina Lilya Maratovna

Tibbiyot fanlari nomzodi, dotsent, Samarqand davlat tibbiyot instituti davolash fakulteti pediatriya kafedrasi mudiri. Samarqand, O'zbekiston.

Xolmurodova Zilola Ergashevna

Samarqand davlat tibbiyot instituti tibbiyot fakulteti pediatriya kafedrasi assistenti. Samarqand, O'zbekiston.

SEMIZLIGI BOR BALALAR VA OʻSMIRLARDA YURAK QON TOMIR TIZIMI

ANNOTASIYA

Semizligi bor 60 nafar bola va o'smir tekshirildi. Miyokardiyal gipertrofiyaning rivojlanishiga tana og'irligi, qon bosimi, vazokonstriksiya jarayonlari, shuningdek insulinga chidamlilik, giperurikemiya va aterogen dislipidemiya ta'sir ko'rsatishi aniqlandi. Ba'zi bolalarda metabolik sindrom ko`zatilib, bu kelajakda yuzaga kelishi mumkin bo`lgan erta asoratlar va nogironlikning oldini olish uchun ushbu holatni vaqtida davolashni talab qiladi.

Kalit so'zlar: semirish, arterial gipertenziya, chap qorincha miyokardiyal gipertrofiyasi, o'spirinlar, bolalar.

Garifulina Lilya Maratovna

Candidate of Medical Sciences, Associate Professor, Head of the Department of Pediatrics, Medical Faculty, Samarkand State Medical Institute. Samarkand, Uzbekistan.

Kholmuradova Zilola Ergashevna

Assistant of the Department of Pediatrics of the Medical Faculty of the Samarkand State Medical Institute. Samarkand, Uzbekistan.

CARDIOVASCULAR SYSTEM IN CHILDREN AND ADOLESCENTS WITH OBESITY

ANNOTATION

60 adolescents with obesity were examined. It was revealed that the development of myocardial hypertrophy is influenced by body weight, blood pressure, vasoconstriction processes, as well as insulin resistance, hyperuricemia and atherogenic dyslipidemia. Some children have metabolic syndrome, which requires therapy for this condition to prevent early complications and disability in adolescents in the adult period.

Key words: obesity, arterial hypertension, left ventricular myocardial hypertrophy, adolescents, children.

Актуальность. В последнее время в большинстве стран мира ассоциированные с ожирением ССЗ являются одной из важнейших медикосоциальных проблем (Дедов И.И., 2006, Ройтберг Г.Е., 2007, Бутрова С.А., 2008, Шилов А.М., 2008).

В настоящее время основными факторами риска, способствующими развитию сердечно-сосудистой взрослых, являются артериальная гипертензия (АГ) и абдоминальное ожирение. При этом известно, что риск развития сердечно-сосудистой патологии формируется в периоде детства, поэтому увеличение детей и подростков с избыточной массой тела и ожирением является фактором повышения уровня сердечно-сосудистой патологии, осложнений во взрослом обстоятельство возрасте. Данное способствует необходимости распознавания и коррекции выявленных нарушений самых ранних признаков патологии сердца и сосудов, возникающих при ожирении и артериальной гипертензии 3]. Данные обстоятельства [1, способствовали изучению и определению роли ожирения и артериальной гипертензии в развитии ремоделирования миокарда. Так, по мнению авторов, формирование эксцентрической ГЛЖ происходит раньше у детей с пограничной артериальной гипертензией на фоне ожирения [1, 2].

Цель. Определение воздействия некоторых факторов риска в развитии ремоделирования миокарда и гипертрофии миокарда левого желудочка у детей с ожирением.

Материалы и методы исследования. Основную группу исследования составили 60 детей и подростков в возрасте от 8 до 16 лет с экзогенно-конституциональным ожирением. Критерием отбора больных послужило определение ИМТ и объема талии у детей и подростков с выявленным избыточным весом и/или ожирением, который находился выше 97 перцентиля определенного возраста и пола (BO3, 2006). B исследование вошли 27 девочек (45%) и 33 (55%) мальчика, средний возраст которых составил 16.87 ± 0.19 года. Группы были разделены на основании показателя ИМТ. 1 группу составили 22 подростка с избыточной массой тела и ожирением 1 степени $(30,3\pm1,2 \text{ кг/м2}), 2$ группу составили 20 подростков с ИМТ — $33,4\pm1,1$ кг/м2. В 3 группу вошли 18 подростков с ИМТ — $36,1\pm1,4$ кг/м2. Контрольную группу составили 20 здоровых подростков аналогичного возраста с ИМТ — $22,5\pm0,9$ кг/м2. Исследование проводили путем общеклинического стандартного обследования. Массу тела оценивали при помощи процентильных таблиц соотношения линейного роста к массе тела или индекса массы тела (индекс Кетле) для определенного возраста и пола (ВОЗ, 1998). Определен объем талии (ОТ) и бедер (ОБ), соотношение которых является показателем абдоминального ожирения. При значениях ОТ/ОБ>0,85 у девочек и >0,9 у мальчиков

их состояние расценивалось как абдоминальное ожирение 1997). Артериальная гипертензия диагностировалась в соответствии критериями, разработанными Комитетом экспертов Всероссийского научного общества кардиологов и Ассоциации детских кардиологов России (Москва, 2009) Морфометрические показатели миокарда (масса миокарда ММЛЖ, индекс массы миокарда — ИММЛЖ, толщина межжелудочковой перегородки — ТМЖП, толщина задней стенки левого желудочка — ТЗСЛЖ) оценивались методом ультразвуковой эхокардиографии ультразвуковом сканере Aloka Alpha-7 кардиологическим пакетом. Лабораторное исследование включало холестерина, определение уровня липопротеидов высокой плотности и триглицеридов в сыворотке припомощи биохимического крови анализатора. Уровень инсулина в сыворотке крови определялся иммуноферментным анализом. Инсулинорезистентность оценивалась c помощью индекса HOMAR, отражающего соотношение уровня глюкозы (в мг/дл) и инсулина (в мкМЕ/мл).

Критерием наличия ИР считалось значение индекса выше 2,7 условных единиц.

Результаты исследования и их обсуждение. В первую очередь, соответственно цели работы, нами была определена взаимосвязь между степенью ИМТ и уровнем систолического и диастолического давления подростков. Результаты работы показали, что уровень систолического и диастолического АД за все временные промежутки был достоверно выше у подростков 3 группы $(135,2\pm9,1$ мм. рт. ст, p<0,05 и p<0,05) по сравнению со значениями подростков с ожирением 1 и 2 степени $(116,1\pm7,2$ и $123,2\pm6,7$ мм. рт. ст.). При этом выявлена корреляционная взаимосвязь прямая ИМТ систолическим давлением, диастолическим давлением и средним давлением за сутки (r=0,601; r=589 и r=0,603 соответственно, р<0,01 для всех показателей).

Следует отметить, что по результатам исследования артериального давления среди подростков с избыточной массой тела и ожирением в 22,9% случаев выявлена « гипертония белого халата», в 16,3% — лабильная форма АГ, у 13,1% — стабильная форма АГ. При этом стабильная форма достоверно чаще выявлена при ожирении 3 степени (6,5%) по сравнению с ожирением 1 степени и ожирением 2 степени (4,5%).

Эхокардиографическое исследование показало, что при ожирении в сочетании с артериальной гипертензией происходит структурно-геометрическая перестройка миокарда левого желудочка. При этом прежде всего увеличивается толщина стенок. Нами выявлена статистически значимая зависимость между ИМТ и толщиной задней стенки левого желудочка (r=0,588; p<0,01), а также толщиной межжелудочковой перегородки (r=0,501; p<0,05).

Следует отметить, что гипертрофия стенок левого желудочка формируется вначале как адаптивная реакция миокарда на нагрузку давлением и обеспечивает соответствие сократительной функции левого желудочка нагрузке. Главными показателями, характеризующими гипертрофию миокарда желудочка, является масса миокарда и индекс массы миокарда левого желудочка. Наши данные показали, что частота встречаемости гипертрофии левого желудочка составила в 1 группе — 40,9%, во 2 группе — 50%, и в третьей — 61,1%. При этом, при анализе индекса массы миокарда левого желудочка в зависимости от варианта артериальной гипертензии существенных различий не обнаружилось. При гипертонии белого халата — 35,7±3,4 $\Gamma/M2,7$, при лабильной гипертензии — 35,9 \pm 4,7 $\Gamma/M2,7$ и при стабильной — 36,4±4,6 г/м2,7. Данный факт говорит о том, что именно ожирение вносит значимый вклад в увеличения массы левого желудочка. Перестройка геометрии левого желудочка выявлена почти у 1/3 подростков с ожирением, при этом в 1 группе — у 30,4%, во 2 группе — у 35,0% и в 3 группе — у 33,3%. Эксцентрическая гипертрофия левого желудочка диагностирована у 16,3% пациентов, концентрическое ремоделирование — у 11,4%. Следует отметить, что концентрическая гипертрофия левого желудочка ассоциируется с максимальным риском сердечнососудистых осложнений, в наших исследования она встречалась в 4,9% случаев и только в группе подростков с ожирением 3 степени.

Структурно-геометрическая перестройка включала изменение геометрии не только левого желудочка, но и левого предсердия. Так, разница в средних значениях размеров левого предсердия выявлена между всеми группами наблюдения (31,4 \pm 1,2 мм; 31,8 \pm 0,8 мм и 34,5 \pm 1,4 мм в 1, 2 и 3 группах соответственно). Также статистически достоверной была корреляционная связь между размерами левого предсердия и ИМТ (r=0,608; p<0,01).

Скорее всего, изменения структуры левого ранним предсердия являются наиболее этапом ремоделирования миокарда. Компенсаторная реакция сердечно-сосудистой системы в ответ на ожирение также касалась и центральной гемодинамики. Так, изменялся объем циркулирующей крови и общее периферическое сопротивление сосудов. Минутный объем кровообращения постепенно возрастал прогрессирования ожирения $(5,5\pm1,1\pi)$ мин., 5.8 ± 0.9 л/мин. и 6.2 ± 1.1 л/мин. соответственно в 1, 2 и 3 группах), что косвенно свидетельствует об увеличении объема циркулирующей крови. Увеличение минутного объема сопровождалось снижением общего периферического сопротивления сосудов по мере увеличения массы тела $(1318,8\pm289,1$ дин/ см/с-5; $1299,9\pm274,3$ дин/см/с-5 и 1287,4±284,1 дин/см/с-5 соответственно в 1, 2 и 3 группах). Также общее периферическое сопротивление зависело от вида артериальной гипертензии. Так, при лабильной артериальной гипертензии данный показатель составил 1287,8±250,7 дин/см/с-5, а при стабильной -1325,6±301,5 дин/см/ с-5, что характеризовало истощение адаптивных возможностей организма и рост общего периферического сопротивления сосудов. Для нас представило интерес также изучить состояние липидного и углеводного обменов, при нарушении которых резко

возрастает риск атерогенных изменений сосудистой стенки.

Для определения типа нарушения углеводного обмена был проведен тест толерантности к глюкозе, выявивший нарушения у 22,9% подростков в основном во группах (30% и 44,4%). глюкозотолерантный тест не всегда отражает степень нарушения углеводного обмена, в связи с чем нами были изучены уровень иммунореактивного инсулина в крови с последующем определением индекса НОМА Результаты исследования показали, что иммунореактивного инсулина был статистически значимо выше у детей с ожирением $(14,2\pm1,2 \text{ мкМЕ/мл}; 16,7\pm1,5)$ мкМЕ/мл; 19,3±2,1мкМЕ/ мл; в 1, 2 и 3 группах соответственно) по сравнению с контрольной группой (9,3±0,8 мкМЕ/мл), при нормальном уровне тощаковой глюкозы. Частота выявления инсулинорезистентности у пациентов с ожирением составила 24,5%. По мере прогрессирования ожирения росла частота инсулинорезистности. Так, группе инсулинорезистентность выявлена в 13,6%, во 2 группе в 25% и в 3 группе — в 38,8% случаев. При корреляционном анализе получены прямые связи между уровнем иммунореактивного инсулина и ИМТ (r=0,545; р<0,01), а также взаимосвязь ИМТ с индексом НОМА (r=0.704; p<0.01).

Полученные данные позволяют заключить, что уровень инсулина прямо и значимо зависит от избыточного накопления жира. При сопоставлении инсулинорезистентности И формы артериальной гипертензии было выявлено, что у подростков с гипертонией белого халата инсулинорезистентность была диагностирована в 3,2%, у подростков с лабильной АГ в 8,1 и у детей со стабильной АГ — в 11,4% случаев. Это что инсулинорезистентность является доказывает, ключевым механизмом, вокруг которой формируется цепочка гемодинамических и метаболических патологий. При анализе результа Фтов липидного состава сыворотки исследуемого контингента подростков было выявлено, что по мере прогрессирования ожирения увеличился как уровень триглециридов (r=0,621; p<0,01), так и уровень липопротеидов низкой плотности (r=0.501; p<0.05) и снизился уровень липопротеидов высокой плотности (r=0,703; p<0,001).

Таким образом, полученные данные показывают, что наличие дислипидемий на фоне инсулинорезистентности, в сопровождении $A\Gamma$ и ожирения говорят о формировании у данного контингента подростков полного метаболического синдрома, который в наших исследованиях был выявлен в 19,6% случаев, неполный метаболический синдром был диагностирован в 36,0% случаев.

Выводы. Развитию гипертрофии миокарда способствуют повышенная масса тела, высокий уровень АД, процессы вазоконстрикции, а также инсулинорезистентность и атерогенная дислипидемия. Эти параметры послужили ранними маркерами гипертрофии миокарда. Также у детей с ожирением и АГ в 1/5 случаев выявлен полный метаболический синдром и в 1/3 случаев неполный метаболический синдром, что требует незамедлительной терапии данного состояния для предотвращения ранних осложнений и инвалидизации подростков во взрослом периоде.

Список литературы/Iqtiboslar/References

1. Бекезин, В. В. Артериальная гипертензия у детей и подростков с ожирением и метаболическим синдромом по

- данным суточного мониторирования артериального давления / В. В. Бекезин, Л. В Козлова // Вестник ВолГМУ. — 2006. — № 1. — С. 45–49.
- 2. Бокова, Т. А. Артериальная гипертензия у детей и подростков с ожирением: современные подходы к профилактике и лечению / Т. А. Бокова, Е. В. Лукина // Практика педиатра. — 2015. — № 6. — С. 16–20.
- 3. Никитина, Т. А. Влияние медико-биологических факторов на развитие ранних признаков ремоделирования миокарда и гипертрофии левого желудочка у детей с конституционально-экзогенным ожирением Т. А. Никитина [и др.] // Земский врач. — 2012. — № 4 (15). — С. 61–62.
- Диагностика, лечение и профилактика артериальной гипертензии у детей и подростков: методические 4. рекомендации экспертов ВНОК и Ассоциации детских кардиологов России (II пересмотр). — М., 2009
- 5. Анамнестические и клинико-метаболические особенности ожирения в детском и подростковом возрасте / Е.Л. Сундукова, Н.Н. Миняйлова, Ю.Н. Шишкова и др. // XII Международная специализированная выставка-ярмарка «Мединтекс»: Сборник материалов научно-практических конференций. - Кемерово, 2010.-С. 87-88.
- Диагностика висцерального (эпикардиального) жироотложения методом эхокардиографии у детей и подростков 6. / Е.Л. Сундукова, Н.Н. Миняйлова, Ю.И. Ровда и др. // Мать и Дитя в Кузбассе. - 2009. - №4 (39). - С. 36-40.