Абдуллаева М.Н., Кудратова М.П., Рашидова М.В.

ВЗАИМОСВЯЗЬ КЛИНИКО-МЕТАБОЛИЧЕСКОГО СТАТУСА И ДЫХАТЕЛЬНОЙ НЕДОСТАТОЧНОСТИ ПРИ ОСЛОЖНЕННОЙ ОСТРОЙ ПНЕВМОНИИ У ДЕТЕЙ РАННЕГО ВОЗРАСТА

СамГосМИ. Самаркандский филиал РНЦЭМП Работа финансирована из гранта ПСНТ 5.1.11.

Метаболические процессы, протекающие в легких, обеспечивают высокоорганизованную кооперацию гуморальных клеточных факторов зашиты бронхиального дерева (биохимический состав секретируемой слизи, состояние системы протеолизингибиция, регуляция процессов коагуляции и фибринолиза как в норме, так и при острых пневмониях) [2].

В условиях гипоксии отмечается повышенное содержание арахидоновой кислоты, обусловленной активацией фосфолипазы Аг, одновременно отмечается снижение ПГЕт в легочной ткани [7], а биосинтез тромбоксанов и лейкотриенов нарастает [4] и, следовательно, повышается содержание в легких веществ, обладающих вазоконстрикторным действием. Доказано [5] участие активного кислорода в повреждении ткани иммунными комплексами [6], таким образом свободно радикальное повреждение микроструктур легких характеризуется не только вентиляционными нарушениями, но и повышенной секрецией биологически активных веществ, что ведет к воспалительной клеточной инфильтрации, повышению сосудистой проницаемости, отеку тканей, местной гипоксии, нарушению диффузии кислорода через аэрогематический барьер и гипоксии [4].

Нарушение отдельных звеньев в этой сложной

взаимосвязи процессов становится своеобразным «фактором риска» утяжеления легочной патологии.

Цель исследования - выделить взаимосвязь клинико-метаболического статуса и нарастания дыхательной недостаточности (ДН) при осложненной острой пневмонии у детей раннего возраста.

Материал и методы. Под наблюдением находилось 72 больных ребенка с острой пневмонией в возрасте от 3 месяцев до 2 лет. Согласно клинико-лабораторной характеристике дыхательной недостаточности при острой пневмонии по клиническим проявлениям и показателям КЩС [3] у 14 больных отмечена ДИ,, в основном при острой неосложненной пневмонии. Д H_{Π} у 48 больных до 2 лет, в этой группе преобладали дети с бронхообструктивными и кардйореспираторными проявлениями и деструкцией легких,

Таблица 1

Клинико-лабораторные показатели при осложненной острой пневмонии с ДНц и ДНщ

у детей раннего возраста No.No Здоровые дети ДΗш ПП Показатели ДН, 1. Число дыханий/1 мин 38-48 50-52 25-45 2. Пульс/1 мин 110-150 150-160 105-135 3. Гемоглобин 65-102 98-138 110-128 4. Сывороточное железо мкмоль/л до 8,9 3,9-24,9 5. Гематокрит % 26-38 28-40 36-42 6. Лейкоциты 1 (Г/л 4.6-16.5 4.5-16.3 4.1-15.3 Лимфоциты % 14-29 7. 18-66 37-59 300000-400000 8. Тромбоциты в пределах нормы 9. СОЭ мм/час 4-10 14-43 3-7 2,2-4,3 Калий в плазме ммоль/л 2,2-3,87 4.15-5.76 71.4-89.7 74,5-87,1 68,7-83,6 в эритроцитах 10. Натрий в плазме ммоль/л 128.1-143.2 126-154 125-143 в эритроцитах 16,3-23,3 16,1-48,7 26,5-34,8 12,45-17,8 16,6-42,84 17,1-27,85 11. Остаточный азот сыворотки крови ммоль/л 12. Мочевина ммоль/л 2,65-5.1 4,15-16,43 3,3-5,6 начало от 7' -8'30" OT 13. Время свертывания крови по Сухареву 5'30"доб'40" от 30"-2' 3'-5' конец от 6'-12" до 8'10" 6'15" до 7' 0.3 - 1.2Иммуноглобулины (г/л) А 0 - 1.80.25 - 3.70-2.3 0 - 1.90.16-3.3 M 14. 2,6-8,5 1,5-8,9 2,7-12,1 G до 101,6 Е (кЕ/мл) 15,94-220,26 1,06-136 Т-лимфоциты % до 55 1 c до 37 50-68 13. В-лимфоциты % до 40 до 44 16-30 91-1250 97-562 0-120 16 ЦИК уел.ед. 17 Комплемент Сизо ед 44-49 28-58 32-48

ДНш у '10 больных от 10 мес. до 2 лет с обструктивным синдромом и деструкцией легких.

Биохимическое исследование проведено использованием аппарата KONE (Аналитические системы t/° Analytical Systems) 2000 г. Radioimmunoassay Кіт, 1986, методических разработок к практическому занятию кафедры биохимии ЦОЛИУВ, Москва, 1985, методических рекомендаций по комплексной оценке иммунного статуса у детей и подростков. М. 1986'.

Результаты и их обсуждение. У больных с ДН] умеренная одышка появлялась при плаче, беспокойстве, сопровождалась периоральным цианозом и тахикардией. $ДH_{\Pi}$ сопровождалась умеренной одышкой в покое, учащением числа дыханий на 15-25%, тахикардией, периоральным цианозом на фоне бледности, метаболический ацидоз (pH меньше 7,3; PO_2 меньше 70 мм рт.ст, pCO_2 70-80 мм рт.ст.). Д H_{III} сопровождалась выраженной одышкой на фоне цианоза. землистый цвет кожных покровов, аритмия. респираторный алкалоз с ионной почечной компенсацией, в дальнейшем развитие гипоксемической комы, отсутствие сознания, акроцианоз, изменение КЩС от респираторного алкалоза с

компенсацией до метаболического ацидоза без компенсации (pH менее 7,15; PO_2 менее 50 мм рт.ст; pCO₂ более 100 мм рт.ст. (табл.1).

Учитывая, что у 44 больных острая пневмония сопровождалась анемией, не исключается роль анемической гипоксии с нормальным насыщением крови кислородом в развитии дыхательной недостаточности. При ДНц мы наблюдаем умеренную активацию коагуспособности лирующей крови, преобладает неферментативный фибринолиз, а при ДНш - высокая коагулирующая активность, также преобладает нсферментативный фибринолиз.

При метаболическом ацидозе без компенсации отмечались такие колебания КШС и газового состава крови: рН - 6,6-7,07, ВВ - 16,39- 23,9, ВИ ист. 29,0-21,5, ВЕ общ. 30,36-21.62. АСТ ВИС 6.4-7,5, СТ ВИС 6,1-8,2, TCO₂ 7,7- 8,5, PCO₂ 43,9-27, PO₂ 63.2-1 13, O₂ 62,5 MM рт.ст., НВ - 12,0.

Полученные результаты (табл. 2) свидетельствуют, что с нарастанием дыхательной недостаточности наблюдается статистически достоверная активация протеолиза с угнетением ингибиторов. При ДНщ с

Таблица 2 Дисбаланс протеазно-ингибиторной системы и эйкозаноидов при острой пневмонии в зависимости отдыхательной недостаточности

№	Тесты	Показатели	<u>ДН</u> ,,	ДНш
		П	10	6
1	Трипсин нг/мл	$M\pm_{\mathrm{T}}$	$35.7 \pm 3,2$	$32.4\pm6,2$
		$\pm c_{\mathrm{T}}$	9.9	14,88
	Калликреин МЕ/мл	$\pi M \pm \tau$	12 73.4±10,4*	9 128.6±27.5
2	•			
		\pm o	35,36	82,5
		П	12	9
3	Прекалликреин МЕ/мл	$M\pm_{ m T}$	$126,4\pm12.8$	107,8x34.2
		\pm o	43,52	102.6
		П	11	7
4	а, -АТ ИЕ мл	$M\pm_{ m T}$	$16,7\pm3,4$	$15,1\pm 5,6$
		\pm o	11,22	14.56
		П	11	7
5	a 2 -МТ ИЕ/мл	$M\pm_{ m T}$	$2,4\pm0,4$	$2,1\pm0.78$
		\pm o	1,32	2.03
		П	6	6
6	ПГЕ нг мл	$M\pm_{ m T}$	0,24±0.014*	$0.12\pm0,0108$
		\pm o	0,034	0.026
		П	6	6
7	111 Е нг/мл	$M\pm_{ m T}$	0.131±0,008*	$1,91\pm0.17$
		\pm o	0.019	0,41
		П	8	6
8	111 Е ₂ нг'мл	$M\pm_{ m T}$	0.218i0,01 *	0.104 ± 0.001
		\pm o	0.028	0.0024
		П	7	7
9	$\Pi\Gamma F_2$ нг/мл	М±т	0,462±0,009*	0.257±0.004
		$\pm \text{ O}$	0,023	0,0104
10	5 Meme	П	8	7
10	5-НЕТЕ нг/мл	$M\pm_{\mathrm{T}}$	1.62±0,07*	2,43±0,13
		\pm o	0,196	0,34
17	12 HETE /	П	7	8
И	12-НЕТЕ нг/мл	М±т	0.57±0.023*	8.9±0,53
		± o •	0.06	1,484
10	15 HETE ***/***	П М.т.	8 2 10 42*	8
12	15-НЕТЕ нг/мл	M±T	8.2±0.42*	2,17±0,47
	Р - достоверность раз.	± ο	1,18	1,32

Р - достоверность различий между Д $\Pi_{\text{п и}}$ ДНщ. *- Р<0,05

летальным исходом наблюдается резкая активация калликреи- на до 327 мЕ/мл, прекалликреина до 389,4 мЕ/мл, a_{7} - АТ до 188,37 ИЕ/мл и угнетение a_{2} - МГ до 0,273 ИЕ/мл. Уровень ЦИК в таких случаях держится на высоких цифрах до 432 усл.ед, - 562 усл.ед.

Угнетение ПГЕ при умеренной гипоксемии и увеличение при выраженной гипоксемии параллельно с ПГЕ2 говорит о компенсаторной реакции организма, расширением сопровождающегося сосудов увеличением соотношения вентиляция/перфузия и эффективности проводимого лечения, в то время, как при ДНщ отмечается истощение резервных сил и стойкие изменения организма, уровень ПГЕ] и ПГЕ 2 вновь падает. Увеличение ПГЕ2 одновременно с увеличением $\Pi\Gamma F_2$ а рассматривается

Выводы. Нарушение кровотока и ли.мфо- тока в пораженном участке легкого при пневмонии приводит к возникновению кислородного голодания, развитию дыхательной недостаточности.

Изменение уровня циркулирующих в крови метаболитов может отражать нарушение легочного барьера, поэтому отмечается взаимосвязь прогрессирования болезни, развитие осложнений с более выраженными изменениями в протеазно-ингибиторной системе, в накоплении эйкозаноидов, иммунокомплекстакже как защитная мера организма [1]. В период гипоксии вазодилататорный эффект ПГЕ усиливается, а вазоконстрикторное действие $\Pi\Gamma F_2$ а менее выражено.

Помимо степени оксигенации крови, величина отмеченных эффектов простагландина в легких зависит

от исходного тонуса сосудов и адаптивных механизмов. Согласно современным представлениям некоторые липоксигеназные метаболиты арахидоновой кислоты могут вызывать торможение по принципу обратной отрицательной связи определенных энзимных систем в каскаде биосинтетических процессов образования простагландинов и таким образом служат в качестве потенциальных регуляторов метаболизма арахидоновой кислоты [1]. Низкий уровень НЕТЕ в острый период заболевания подтверждает наличие конкурентных взаимодействий с простагландинами, причем высокий уровень 12-НЕТЕ при ДН_Ш также можно считать результатом трансформации, так как НЕТЕ как МРСА (медленно реагирующая субстанция анафилаксии) появляются в большом количестве за счет накопления их, обычно к выписке. Высокий уровень IgE до 220,3 свидетельствует, что гиперчувствительность замедленного типа предшествует нарушению газообмена.

(Doctor axborotnomasi, Samarqand

ных механизмов. Нарушение процессов инактивации биологически активных веществ в легких способствует ИХ генерализованного выражающегося в развитии обструктивного синдрома, деструкции легких, нейротоксикоза, что подтверждается наличием взаимосвязи между уровнем циркулирующих в крови биологически активных веществ и состоянием функции внешнего дыхания у детей с острой осложненной пневмонией

Литература

- 1. Марков Х.М. Простагландины в педиатрии. Советская педиатрия (ежегодные публикации об исследованиях советских авторов). Под.ред. М.Я. Студеникина.: АМН СССР-М.: Медицина-1990.-С. 184-240
- 2. Сыромятникова Н.В., Гончарова В.А.. Котенко Т.В. Метаболическая активность легких .- Л.: Медицина- 1990.c.168
- 3. Шамсиев С.Ш., Шабалов Н.П. Острые пневмонии у детей раннего возраста. 2-е изд., переработ. и доп,- Ташкент. Мелицина.-1994. 317с.
- 4.Ahmed T., Greenblatt D.W., Birch S. el al Abnormal micocilliary transport in allergic patients with antigenin-duced bronchospasm: Role of slow reacting substance of anaphylaxis //Am.Rev.Resp.Dis.-2001.-V.124.-P.110-114.
- 4. ElermannG.J., Dickey B.F., Thrale R.S. Polymorphonuclear leucocyte participation on acute oleic- acid induced injury.//Am. Rev.resp.Dis-1993.-V. 128. -№5.-P. 845-858
- Petrone W.F., English D.K., Wong K., McCord J.M. Free radicals and inflammation: the superoxide dependent activation of a neutrophil chemo static factor in plasma // Proc.Nat.Acad.Sci: 1990 -V.27. Ne6-P. 159-1163
- Tan W.C., Cortesi R. Privett G. Lipid peroxide and lung prostaglandins./'Arch.Environm. Health 1998,- V.28-P.82-84.