

Республиканская научно-практическая конференция с международным участием «Современные аспекты развития фундаментальных наук и вопросы их преподавания»

ПОЛУЧЕНИЕ НАНОРАЗМЕРНЫХ ЧАСТИЦ МЕТАЛЛА НИКЕЛЯ НА ПОВЕРХНОСТИ КАРБОНИЗИРОВАННЫХ ПОЛИМЕРОВ

Диметова Ф.Д., Сулейманова Г.Г., Джумаев Д.А.

Ташкентский педиатрический медицинский институт, Ташкент, Республика Узбекистан

Химические методы, которые себе сочетают подходы неорганического, металлоорганического И органического синтеза, являются наиболее распространёнными способами получения наночастиц. Синтез наночастиц металлов с помощью химического восстановления из растворов их солей является наиболее простым в применении и не требует специальных условий и оборудования. Наиболее часто химическое восстановление реализуется в жидкой фазе, т.е. в водных и неводных средах. Широкое распространение метода связано с его простотой и доступностью.

Цель исследования: получение наноразмерных частиц металла никеля на поверхности карбонизированных полимеров.

Материалы и методы исследования

Работа посвящена исследованию сорбции ионов Ni2+ анионитами на основе ПВХ (ППЭ-1) и полиэтиленполиамин (ПЭПА) и получению наночастиц металлов на поверхности полимеров. Для изучения кинетики и термодинамики сорбции иона Ni2+, процесс осуществляли в статических условиях. Навеску 0,3 г сорбента помещали в растворы исследуемой соли объемом 100 мл различной концентрации. Содержание иона до и после сорбции определяли спектрофотометрическим методом. Было ясно, что при процессе сорбции ионов Ni2+ сорбентом ППЭ-1, повышение температуры (293К; 313К; 323К) и увеличение концентрации (0,1; 0,075; 0,05; 0,025 моль/л) ионов Ni2+ в исходном растворе приводит к возрастанию их сорбции.

Результаты исследования

Наиболее распространённым и в то же время удобным способом приготовления никелевых наночастиц является химическое восстановление их из соответствующих солей. В общем виде основная окислительно-восстановительная реакция образования наночастиц представлена на схеме: Mn+ + [Red] -> M0 + [Ox]

В данной реакции Mn+ = катионная (окисленная) форма металла, [Red] = восстановитель, M0 = нуль-валентный (восстановленный) металл, [Ox] = продукт окисления восстановителя. Наиболее часто химическое восстановление реализуется в жидкой фазе, т.е. в водных и неводных

средах. В качестве соединений металлов обычно используют их соли, в качестве восстановителей - как неорганические, так и органические соединения: комплексные гидриды металлов, формальдегид, [1]. Многие щавелевой винной кислот высокомолекулярные И органические соединения также способны восстанавливать катионы металлов в мягких условиях. Кроме этого, восстановление катионов возможно за счёт окисления органических соединений, являющихся реакционной средой [2].

Для идентификации восстановленных сорбированных ионов Ni2+ были проведены ИК-спектроскопические исследования. Видно что, на рисунке 1А после сорбции ионов металлов, в полученных полимер-металл комплексных соединениях регистрированы связи Ni-N 409 см-1. Образование данной связи можно также наблюдать в снижении частоты колебания при 3360 см-1 относящейся к валентным колебаниям вторичной амино-группы. При этом в никелевых комплексах 3348 см-1 наблюдается снижение полосы поглощения на 3-81 см-1. При сорбции металла зарегистрированы полосы поглощения при 457-482 см-1 относящиеся к колебаниям связи Me-O.

Ha рисунке 1Б даны ИК спектры после восстановления анионите ППЭ-1. ИКсорбированного металла Данные В спектроскопических исследований показали уменьшение интенсивности в области 409 см-1 валентных колебаний групп Ni-N.

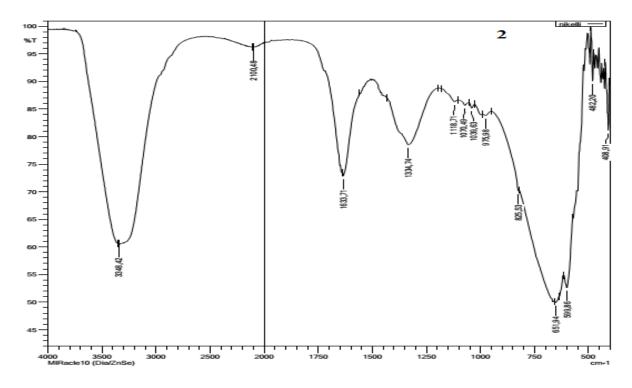


Рис. 1А-ИК- спектр ППЭ-1-Ni

Республиканская научно-практическая конференция с международным участием «Современные аспекты развития фундаментальных наук и вопросы их преподавания»

1500

1000

Рис. 1Б-ИК- спектр после восстановления никель содержащего полимера

2500

Это свидетельствует о восстановлении положительно заряженных металлов, сорбированных в порах полимера.

Заключение. ИК-анализ материала, полученного в результате восстановления положительно заряженных металлов, показал, что в составе полученного материала появляются валентные колебания в новом поле поглощения 2260-2190 см-1, соответствующем R-С≡С-R'. На основании полученных результатов можно сказать, что полимер содержит алкиновые группы, что дает возможность назвать полученный полимерный материал карбонизированным материалом.

Библиографические ссылки:

3500

3000

- 1. Khan, Z. Preparation and characterization of silver nanoparticles by chemical reduction method / Z. Khan, S.A. Al-Thabaiti, A.Y. Obaid, A.O. Al-Youbi // Colloids Surf. B Biointerfaces. 2011. V. 82. P. 513-517.
- 2. Sau, T.K. Complex-shaped metal nanoparticles: Bottom-Up syntheses and applications / T.K. Sau, A.L. Rogach. Wiley-VCH, 2012. 582 pp.
- 3. Исмаилова, Гулзира Орынбаевна, et al. "Распространенные природные халконы." Альманах современной науки и образования 10 (2016): 36-45.

Республиканская научно-практическая конференция с международным участием «Современные аспекты развития фундаментальных наук и вопросы их преподавания»

- 4. Бабаханова, 3. А., and М. Х. Арипова. "Высокоогнеупорные алюмопериклазоуглеродистые керамические материалы на шпинельной связке." Новые огнеупоры 9 (2018): 23-27.
- 5. Икрамова, Сурайё Хакимовна. "ФАКТОРЫ РИСКА РЕЦИДИВИРУЮЩИХ ИНФЕКЦИЙ РЕСПИРАТОРНОЙ СИСТЕМЫ У ДЕТЕЙ." Web of Scholar 2.4 (2018): 23-25.
- 6. Исмаилова, Гулзира Оринбаевна, Шаира Фатхуллаевна Каримова, and Зухра Дурисберген Кизи Алланиязова. "ЭФФЕКТИВНЫЙ МЕТОД СИНТЕЗА ВОЗМОЖНЫХ ПРОИЗВОДНЫХ 8-ФОРМИЛ-1, 4-БЕНЗОДИОКСАНОВ В КАЧЕСТВЕ ИСХОДНЫХ ПРОДУКТОВ." Universum: химия и биология 5-2 (107) (2023): 14-19.