

VOLUME 2 APRIL 2023 ISSN: 2181-385X

ИССЛЕДОВАНИЕ ПЕНООБРАЗОВАНИЯ В ГЛИНИСТЫХ СУСПЕНЗИЯХ В ЗАВИСИМОСТИ ОТ СОДЕРЖАНИЯ И ПРИРОДЫ ПАВ

Калилаев Максетбай Уразбай ули

Ташкентский химико-технологический институт,

E-mail: qalilayev.m@mail.ru

Бухаров Шухрат Буриевич

Ташкентский химико-технологический институт

Абдикамалова Азиза Бахтияровна

Институт общей и неорганической химии, АН РУз

Эшметов Иззат Дусимбатович

Институт общей и неорганической химии, АН РУз

Очилова Садокат Одил кизи

Ташкентский химико-технологический институт

Аннотация. Статья представляет результаты эксперимента по изучению влияния концентрации и типа ПАВ на образование пены в глинистых суспензиях. В результате исследования было выявлено, что добавление ПАВ в систему приводит к увеличению объема пены, причем наиболее выраженный эффект наблюдается при использовании ПАВ типа ОП-10. При увеличении концентрации ПАВ до определенного значения (0,3%) наблюдается резкое увеличение высоты пены, однако дальнейшее увеличение концентрации не оказывает существенного влияния на количество образующейся пены. Исследование также показало, что высота пены в системе с ПАВ типа ОП-10 выше, чем в системе с ПАВ типа ГКЖ-11, что говорит о более высокой адсорбции первого на границе раздела фаз жидкость-воздух. Исследование поверхностного натяжение растворов ПАВ показал, что ПАВ типа ОП-10 обладает более выраженными свойствами поверхностно-активного вещества, чем ПАВ типа ГКЖ-11. Эти результаты могут быть полезны для улучшения пенообразования в буровых растворах на основе глинистых суспензий с использованием ПАВ различных типов и концентраций.

Ключевые слова: пенообразование, пеногаситель, ПАВ, ОП-10, ГКЖ-11, адсорбция, поверхностное натяжение.

STUDY OF FOAMING IN CLAY SUSPENSIONS DEPENDING ON THE CONTENT AND NATURE OF THE SURFACTANT

Abstract. The article presents the results of an experiment to study the effect of surfactant concentration and type on foam formation in clay suspensions. As a result of the study, it was found that the addition of surfactants to the system leads to an increase in the volume of foam, and the most significant effect is observed when using surfactants of the type OP-10. With an increase in the concentration of surfactants to a specific value (0.3%), a sharp increase in the height of the foam is observed; however, a further increase in the concentration does not have a significant effect on the amount of the formed foam. The study also showed that the height of the foam in the system with surfactant type OP-10 is higher than in the system with surfactant type GKJ-11, which indicates greater foam adsorption at the liquid-air interface. The study of the surface tension of surfactant

VOLUME 2 APRIL 2023 ISSN: 2181-385X

solutions showed that the surfactant type OP-10 has more significant properties of the surfactant than the surfactant type GKJ-11. These results may be useful to improve the foaming in slurry drilling fluids using various types and concentrations of surfactants.

Key words: foaming, defoaming agent, surfactant, OP-10, GKJ-11, adsorption, surface tension.

ВВЕДЕНИЕ

Известно, что приготовление буровых растворов сопровождается образованием пены, которую необходимо погасить. Кроме того, при бурении скважин с использованием газожидкостных промывочных смесей всегда стоит вопрос разрушения этих систем для последующей очистки от шлама. В различных отраслях промышленности существует значительное число способов и устройств для разрушения пены, но для ряда технологических производств в химической, горнорудной и других отраслях, в том числе и при бурении скважин, поиск новых эффективных методов и разработка устройств пеноразрушения является актуальной задачей [1, 2].

Большое количество и объем пены сильно сказывается на процесс бурения. Пено разрушительно действует на техническое оборудование, т.к. адсорбированный воздух может окислят ценные детали буровой установки. Вместе с тем образовавшийся пены осложнить процесс приготовления буровой жидкости и её закачку в бугрящееся скважины [3, 4].

Образование пены невозможно предупредить. Всякий буровой раствор в процессе приготовления подвергается перемешиванию и скорость, а также продолжительность перемешивания зависит от объема химических реагентов и их природы. А данный процесс способствует образованию большего количества устойчивой пены. Перекачивание раствора с помощью насосов только усугубляет пеноразрушение в данной системе. Стоит отметить, энергетическую затрату, за счет потери мощности насоса на перекачивание воздуха. Также пена может образоваться на устье скважины. Циркуляция раствора в скважине, попадание газа из скважины вызывает дополнительное образование пены. Все это негативно влияет на работы очистных сооружений (гидроциклоны, вибросита и др.) [5, 6, 14-17].

Целью исследований являлось исследование пенообразования в глинистых суспензиях в зависимости от содержания и природы ПАВ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Испытания проводились на 5% суспензиях бентонита, обработанных различными ПАВ, которые используются в настоящее время для регулирования вязкостных и фильтрационных характеристик буровых растворов. В качестве потенциальных ПАВ выступили реагенты ОП-10 и ГКЖ-11. Исследовано влияние пенообразующей способности данных ПАВ в зависимости от их концентрации. Влияние концентрации изучалась в интервале 0,01-0,1%.

ОП-10 — вспомогательный ПАВ. В основном данный ПАВ используется для повышения смазочных свойств буровых растворов. Представляет собой полупрозрачную жидкость желтоватого цвета. Является неионогенным ПАВ. По составу является спиртом с общей формулой НО(СН₂-СН₂-О)пСН₂-СН₂-ОН [6]. Хорошо растворим в воде. По токсичности можно отнести к IV группе опасности веществ. При перемешивании водных растворов наблюдается интенсивное пенообразование.

Кроме смазочных характеристик, данный ПАВ демонстрирует и эмульгирующие характеристики. Поэтому его широко использует в процессе приготовления глинистых и безглинистых буровых растоворов с использованием трудно смачивающихся реагентов и химических материалов, например, барит, графит и др.

VOLUME 2 APRIL 2023 ISSN: 2181-385X

ГКЖ-11 широко используется в качестве гидрофобизатора в составе глинистых и безглинистых буровых растворов. Также данный реагент в составе композиции с маслами эффективен при снижении коэффициента трения глинистой корки, т.е. обладает смазочными характеристиками.

Данный ПАВ представляет собой почти прозрачную жидкость желтого цвета. При хранении образуется осадок, представляющий собой мелкодисперсную фазу. Плотность жидкости составляет 1,25-1,30 г/см³. pH 1% раствора не превышает 9.

Согласно по методике [7-9] определения пенообразования в растворе стеклянная мензурка с суспензией располагается между источником света и наблюдателем. По положению пены и жидкой среды отмечается раздел фаз жидкость/пена и пена/воздух. Суспензия перед измерением встряхивалась в течение 15 мин для образования устойчивой пены. Высота столба жидкости и пены отмечается после истечения определенного времени.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты исследования высоты пены, образующиеся в суспензиях бентонита под воздействием различных количеств ПАВ, приводятся на рис. 1. Измерение высоты было проведено сразу после встряхивание суспензии.

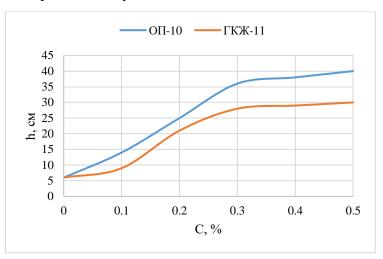


Рис. 1. Зависимость высоты пены в 5% суспензии глины от концентрации ПАВ в системе.

Как можно увидеть из данного рисунка встряхивание и продувание воздуха 5% суспензии приводит к образование пены в количестве не более 6 см сразу после её образования. Добавление в систему ПАВ и повышение его концентрации приводит к увеличению объема пены. Особенно, что заметно для ОП-10. Добавление его в количестве 0,05% от массы суспензии приводит к образованию пены высотой 10 см, в то время как для ГКЖ-11 незначительно влияет на количество пены. Повышение концентрации обеих ПАВ до 0,3% резко повышает высоту пены. Последующие изменения концентрации ПАВ (более 0,5%) не приводит к заметным изменениям и в этих случаях можно наблюдать равновесное состояние образование пены в данной системе. Во всем диапазоне концентрации высота пены в системе с ОП-10 выше по сравнению с ГКЖ-11, что показывает более превосходные значения адсорбции первого на границе раздела фаз жидкость-воздух.

Кинетика генерирования пены для данных ПАВ также различается. Результаты исследования кинетики генерирования пены в системе глинистой суспензии с ПАВ приводятся на рис. 2.

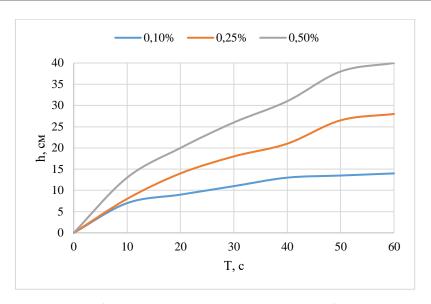


Рис. 2. Кинетика образования пены в 5% суспензии бентонита с ОП-10.

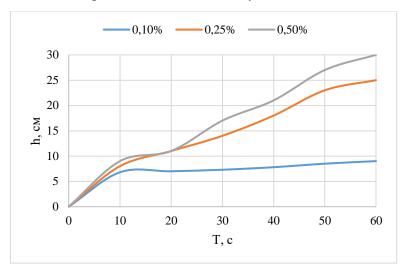


Рис. 3. Кинетика образования пены в 5% суспензии бентонита с ГКЖ-11.

При низких концентрациях обоих ПАВ в начале процесса генерирования высота пены характеризуются практически идентичными значениями. Однако, после 10 секунд продувания воздуха в систему с ГКЖ-11 наблюдается некое равновесие в высоте пены, в то время как для системы с ОП-10 продолжается увеличение пены, особенно что заметно для более высоких концентрации ПАВ (0,5%). Продувание воздуха в течение 20 секунд и более заметно повышает объем пены в системе с ГЖЖ-11 при его концентрациях более 0,25% и после минуты генерирования высота пены достигает более 50 см, в то время как для концентрации 0,1% высота составляет только 9 см.

Если за минуты 0.5% суспензия ОП-10 образует 41 см пены, то такие количество ГКЖ-11 дает только 30 см. Дальнейшее продувание и встряхивание не приводит к заметным изменениям в значениях высоты пены, а только влияет на её устойчивость, т.к. в данном процессе возможно изменение дисперсности пены и толщины жидкой прослойки между ними.

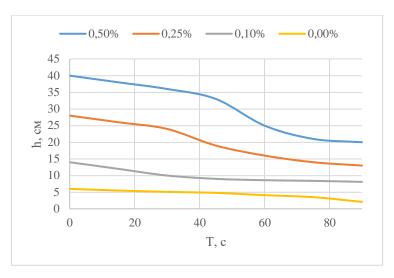


Рис. 4. Кинетика разрушения пены 5% суспензии бентонита с ОП-10.

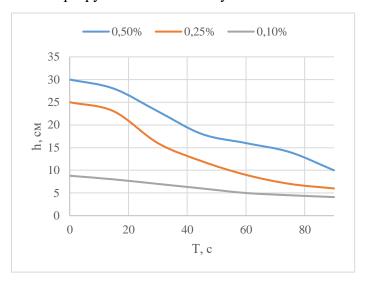


Рис. 5. Кинетика разрушения пены 5% суспензии бентонита с ГКЖ-11.

Также пены, образованные в системе с различными ПАВ отличаются между собой по времени жизни. Как установлено устойчивость пены в системе 5% глины соответствует содержанию в ней ПАВ и его пенообразующей характеристики. Относительно большей устойчивостью, т.е. сохранностью во времени обладают системы с ОП-10 при его концентрациях более 0,3%. Если учесть тот факт, что данные ПАВ в системе бурового раствора в зависимости от характеристик и условий бурового раствора могут достигать концентрации 1-2% и более, то образованные пены могут отличаться высокой устойчивостью во времени (рис. 4 и 5).

Как можно наблюдать из данных рисунков в суспензии с 0,5% ОП-10 высота пены плавно уменьшается в течение 40 с, а последующих 20 с происходит резкое снижение высоты пены от 34 до 23 см с последующей стабилизацией общего объема пены.

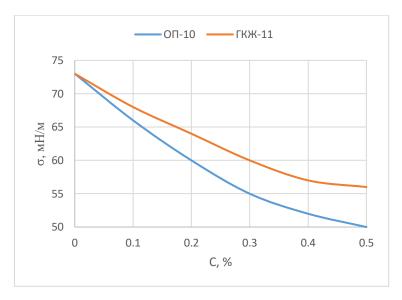


Рис. 6. Изменение поверхностного натяжение воды в зависимости от концентрации ПАВ.

Несмотря на меньшую высоту в системах с ГКЖ-11 даже после 10 минут отстаивания сохраняется пена с высотой 3-4 см в суспензиях содержанием ГКЖ-11 более 0,2%. Для полного разрушения пены для систем с ПАВ потребуется около 30-60 мин, в то время как для систем без них достаточно около 2 минут.

Можно утверждать, что изменение пенообразующих способностей исследуемых ПАВ и продолжительность существование пен в системе бурового раствора зависит от природы данных ПАВ и устойчивость их пен коррелируют с величинами их адсорбции из раствора на границе раздела вода-воздух (рис. 7) [10-13]. Величина адсорбции устанавливалась на основе определения поверхностного натяжения растворов ПАВ (рис. 6).

Как показывает кривая изменения поверхностного натяжения от концентрации ПАВ более выраженные поверхностно-активные характеристики наблюдается у ОП-10 и повышение его концентрации в водном растворе снижает её поверхностное натяжение до 50,5 мH/м, а раствор ГКЖ-11 при таких концентрациях ПАВ имеет σ =56 мH/м.

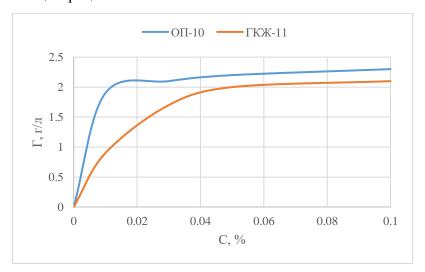


Рис. 7. Изотермы адсорбции ПАВ на границе раздела жидкость/воздух.

Сопоставление представленных изотерм адсорбции с зависимостями пенообразования и устойчивости пен показывает, что последовательность роста величины адсорбции от природы ПАВ и его содержания в водном растворе определяет их пенообразующую способность в

VOLUME 2 APRIL 2023 ISSN: 2181-385X

системе бурового раствора и их устойчивость. Можно утверждать, что именно адсорбция данных ПАВ на границе раздела фаз жидкость-воздух предопределяет пенообразование в суспензиях глин и их устойчивость.

ВЫВОДЫ

В результате эксперимента было выявлено, что добавление ПАВ в систему приводит к увеличению объема пены, причем наиболее выраженный эффект наблюдается при использовании ОП-10. При этом повышение концентрации ПАВ до определенного значения (0,3%) приводит к резкому увеличению высоты пены, однако дальнейшее увеличение концентрации не оказывает существенного влияния на количество образующейся пены. Также было выявлено, что высота пены в системе с ОП-10 выше, чем в системе с ГКЖ-11, что говорит о более высокой адсорбции первого на границе раздела фаз жидкость-воздух.

Обе используемые ПАВ при низких концентрациях дают практически одинаковую высоту пены, однако при более высоких концентрациях ОП-10 обеспечивает более высокую высоту пены и большую устойчивость во времени, чем ГКЖ-11. При продолжительном продувании воздуха образование пены продолжается, однако изменение дисперсности пены и толщины жидкой прослойки между ними может влиять на ее устойчивость. Кроме того, концентрации ПАВ в системе бурового раствора могут достигать значительных уровней, и поэтому образованная пена может быть очень устойчивой во времени.

Из графика зависимости поверхностного натяжения от концентрации ПАВ видно, что ОП-10 обладает более выраженными свойствами поверхностно-активного вещества, и при увеличении его концентрации в водном растворе наблюдается снижение поверхностного натяжения до 50,5 мН/м. В то же время, раствор ГКЖ-11 при таких же концентрациях ПАВ имеет поверхностное натяжение σ =56 мН/м.

VOLUME 2 APRIL 2023 ISSN: 2181-385X

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ / REFERENCES

- 1. Булатов А.И., Макаренко П.П., Проселков Ю.М. Буровые промывочные и тампонажные растворы. Учеб. пособие для вузов. М.: «Недра», 1999. 424 с.
- 2. Рязанов Я.А. Энциклопедия по буровым растворам. Оренбург. Летопись. 2005. 664 с.
- 3. Новиков В.С. Устойчивость глинистых пород при бурении скважин. М.: Недра, $2000.-711~\mathrm{c}.$
- 4. Книга инженера по растворам. // Под ред. Добросмыслова А.С. М.: «Гарусс», 2006. 549 с.
- 5. Хуббатов А.А., Шарафутдинов З.З., Мирсаянов Д.В. Буровые растворы на основе катионных полимеров // Строительство нефтяных и газовых скважин на суше и на море 2012. N 2 C.43-45
- 6. Аверкина Е.В., Шакирова Э.В., Фокин Ю.В. Исследование реагентов-пеногасителей в составе бурового раствора // Известия Сибирского отделения Секции наук о Земле Российской академии естественных наук. Геология, разведка и разработка месторождений полезных ископаемых. 2017. Т. 40. № 3. С. 90–98. DOI: 10.21285/2541-9455-2017-40-3-90-98
- 7. Исследование пенообразования [Электронный ресурс] // Тирит. Лабораторное и промышленное оборудование. URL: http://tirit.org/tenz_kruss/theory_foam.php
- 8. Яковлев А.А. Исследование влияния различных реагентов на разрушение пен и предупреждение пенообразования у буровых растворов // Нефтегазовое дело. 2019. № 7. С. 84-88.
- 9. Gao Y, Goldberg D, Li H. "Electrorheology of Micro- and Nanoparticle Suspensions for Drilling Fluid Applications" Journal of Applied Polymer Science. 2014; 131(21):41137.
- 10. Тихомиров В.К. Пены. Теория и практика их получения и разрушения. М.: Химия, $1983.-264\ c.$,
- 11. Мураев Ю. Д. Газожидкостные системы в буровых работах / Санкт-Петербург. гос. горн. ин-т (техн. ун-т). СПб., 2004. 123 с.
- 12. Павлов П.П. Применение поверхностно-активных веществ при добыче нефти. Баку: Азнефтеиздат, 1957. 43 с.
- 13. Kawale D. Influence of dynamic surface tension on foams: Application in gas well deliquification. MSc Thesis / Delft University of Technology of Applied Sciences Department of Multi-Scale Physics. Delft, 2012. 97 p.