Повышение эффективности работы тепловозов средствами бортовых систем диагностирования
Актуальность работы. На железнодорожном транспорте РФ и стран СНГ отказы топливной аппаратуры (ТА) и цилиндро-поршневой группы (ЦПГ) составляют более 20% от общего количества отказов тепловозных дизелей в эксплуатации. Данный тип отказов является одной из причин перерасхода топлива и в значительной мере определяет периодичность и объем технического обслуживания дизеля.
В настоящее время для оценки технического состояния ТА и ЦПГ используются в основном средства стационарной диагностики, которые требуют значительных затрат времени на выполнение подготовительных операций (постановка тепловоза, подключение датчиков, калибровка каналов и т.д.), поэтому используются нерегулярно, как правило, для локализации отказов, что практически исключает возможность учета реального технического состояния узлов дизеля при планировании объемов ремонта. Ревизия исправного оборудования дизелей без учета его реального состояния приводит к увеличению затрат на техническое обслуживание и интенсивность приработочных отказов.
Задача непрерывного контроля технического состояния ТА и ЦПГ, а также других узлов дизеля может эффективно решаться средствами бортовой диагностики, однако долгое время их развитие сдерживалось низкой контролепригодностью локомотивов.
Бортовые микропроцессорные системы управления (МСУ) современных локомотивов (2ТЭ116У, ТЭП70БС, 2ТЭ25К, 2ТЭ25А, 2ТЭ70 и др.) имеют встроенную подсистему диагностики. Однако получаемые ею данные для оценки технического состояния ТА и ЦПГ в настоящее время практически не используются ввиду отсутствия надежных параметрических методов диагностирования этих узлов.
Существующие методы диагностики в большинстве случаев не могут быть использованы для непрерывного оперативного контроля технического состояния ТА и ЦПГ в эксплуатации, так как требуют демонтажа ее с дизеля или установки специального съемного оборудования.
В связи с этим актуальной является задача разработки методов обработки диагностической информации, получаемой подсистемами диагностики бортовых систем управления, которые позволяли бы своевременно выявлять факт отклонения технического состояния узлов дизеля от нормального с последующим уточнением вида отказа средствами стационарной диагностики.
Целью диссертационной работы является повышение эксплуатационной надежности и экономичности тепловозов за счет совершенствования бортовых диагностических комплексов и алгоритмов обработки диагностической информации.
Научная новизна работы. В качестве новых научных результатов выдвинуты следующие положения:
1. Разработан метод оценки технического состояния топливной аппаратуры дизеля, основанный на результатах измерения относительного изменения температуры отработавших газов и коэффициента избытка воздуха.
2. Разработана математическая модель рабочего процесса дизеля как объекта диагностирования, отличающаяся способом определения коэффициента избытка воздуха в цилиндре.
3. Разработана методика измерения значений диагностических параметров тепловозного дизеля в эксплуатационных режимах.
ОСНОВНЫЕ ВЫВОДЫ И РЕКОМЕНДАЦИИ
В процессе выполненных теоретических и экспериментальных исследований получены следующие результаты:
1. Существенное повышение уровня контролепригодности современных тепловозов (2ТЭ116У, ТЭП70БС, 2ТЭ25К, 2ТЭ25А), оборудованных комплексной микропроцессорной системой управления дизель-генераторной установкой, включающей подсистему диагностики силовой установки, не привело к изменению структуры и эффективности системы их технического обслуживания.
2. Разработана математическая модель рабочего процесса тепловозного дизеля как объекта диагностирования, которая дает возможность выполнить анализ влияния различных факторов на величину температуры отработавших газов в неноминальных режимах работы дизеля. Погрешность моделирования изменения давления в цилиндре, определенная сравнением результатов моделирования с индикаторными диаграммами цилиндров дизеля, полученными в процессе реостатных испытаний, не превышает 6,8%.
3. В результате анализа рабочего процесса дизеля с применением метода малых отклонений, установлено, что основными факторами, определяющими величину температуры отработавших газов дизеля, являются значение коэффициента избытка воздуха и техническое состояние топливной аппаратуры дизеля.
4. Предложен и обоснован метод интегральной оценки качества рабочего процесса в цилиндре дизеля, основанный на контроле соответствия относительных изменений температуры отработавших газов в цилиндрах дизеля и коэффициента избытка воздуха.
5. Предложен и обоснован метод измерения относительного изменения коэффициента избытка воздуха в цилиндре дизеля по косвенным параметрам, основанный на анализе малых отклонений давления наддува и цикловой подачи топлива. Относительная погрешность измерения не превосходит 6 %.
6. Теоретически обоснована и экспериментально проверена методика измерения значений диагностических параметров тепловозного дизеля в эксплуатационных режимах, исключающая влияние переходных процессов на точность измерения.
7. Изготовлен и испытан в эксплуатационных условиях макетный образец устройства для непрерывного контроля величины суммарного коэффициента избытка воздуха дизеля с использованием датчика BOSCH LSU4.2
8. С целью повышения точности определения изменения коэффициента избытка воздуха в цилиндрах дизеля, перечень параметров контролируемых подсистемой диагностики бортовых микропроцессорных систем управления силовой установкой тепловоза, должен быть дополнен температурой надувочного воздуха и суммарным коэффициентом избытка воздуха дизеля.
9. Проведенные стендовые и эксплуатационные испытания подтвердили эффективность предложенных методик и технических решений. Ожидаемый экономический эффект от внедрения результатов работы составил 4,9 млн. рублей в год на 60 тепловозов при сроке окупаемости затрат 1 год.