Актуальность и востребованность темы диссертации. Силикатное стекло является одним из наиболее интересных материалов, используемых человеком с древнейших времен. Несмотря на широкое применение в науке, технике и быту, в физике стекла имеется ряд фундаментальных проблем. Например, как известно в науке, строение вещества (структура, взаимное расположение атомов в пространстве) оказывает существенное влияние на его физические свойства. Однако строение стекла, хотя и предложено множество моделей, в течение почти века является предметом споров ученых всею мира в результате того, что основные экспериментальные методы изучения строения кристаллических веществ (дифракция рентгеновских лучей, электронов и нейтронов) оказались недостаточно плодотворными вследствие отсутствия дальнего порядка и многокомпонентное™ наиболее распространенных и интересных типов стекла. Степень применимости модели энергетических зон и связанных с ней представлений (эффективная масса, подвижность носителей заряда) в стеклах также требует обоснования в каждом конкретном случае.
Исследование электрических свойств силикатного стекла, легированного оксидами переходных металлов (в частности, RuCh), -функциональной основы толстопленочных резисторов, широко используемых в последние годы в электронных приборах, выдвинуло дополнительные физические проблемы. В частности, было установлено, что температурная зависимость удельного сопротивления р(7) при низких температурах (Г < 50 К) не похожа на наблюдаемые зависимости ни в кристаллических полупроводниках (активационный закон In р ~ Г1), ни в аморфных веществах (закон Мотта In р ~ Tu’Минимум р(Т), наблюдаемый при промежуточных температурах, нс соответствует ни одному из существующих физических представлений. За минимумом следует металлическая проводимость (р-Т или р~-Т^\ противоречащая представлениям о стекле как о диэлектрике с шириной запрещенной зоны более 3 эВ.
Термоэлектрический эффект в различных материалах и структурах представляет интерес как с точки фундаментальных физических процессов, так и в плане практического применения термоэлектрических преобразователей (для получения электрической энергии от возобновляемых источников, утилизации энергетических отходов, охлаждения и нагрева). Термоэлектрические эффекты могут дать сведения о плотности энергетических состояний электронов, о скрытых структурных (фазовых) переходах, состоянии электронной подсистемы, электрон-фононных взаимодействиях. Для практических целей важна термоэлектрическая добротность материала ZT = S~gT!k, определяемая электропроводностью гг, теплопроводностью к и коэффициентом термоэдс (коэффициент Зеебека) 5. Здесь Т - рабочая температура термопреобразователя. Для широкою применения термоэлек-трических преобразователей требуются материалы с ZT >2 в интервале температур 500-1000 К.
Однако в настоящее время термоэлектрические свойства легированного силикатного стекла почти не изучены, несмотря на то, что его низкая теплопроводность (к ~ 0,5-1 Вт/(м-К)) и высокая электропроводность (а ~ 400-4000 Ом ’-м'1) могут обеспечить существенное повышение ZT.
Поэтому выяснение физических механизмов переноса заряда и генерации термоэдс в легированных стеклах на основе сочетания экспериментальных и теоретических методов и расширения границ исследований, установление связи этих явлений с составом и особенностями структуры стекла в широком диапазоне внешних воздействий являются актуальной научной проблемой физики стеклообразного состояния и в создании материалов с высокой термоэлектрической добротностью из доступного и безопасного сырья.
За годы независимости в Республике Узбекистан создана законодательная база для обеспечения энергетической безопасности и использования альтернативных источников энергии, осуществлен ряд практических мер. В их числе - Указ Президента Республики Узбекистан УП-4512 «О мерах по дальнейшему развитию альтернативных источников энергии» от 1 марта 2013 г. и Постановление Президента Республики Узбекистан 1111-1929 от 1 марта 2013 г. «О создании Международного института солнечной энергии», Постановление Кабинета Министров Республики Узбекистан №265 от 25 сентября 2013 г. «О мерах по организации деятельности Международного института солнечной энергии», договоренность компаний «Узбскэнсрго» и Suntech Power (КНР) о создании в свободной индустриально-экономической зоне «Навои» совместного предприятия но выпуску фотоэлектрических панелей мощностью 100 МВт на основе новейших технологий, намеченное строительство в Самаркандской области солнечной станции мощностью 100 МВт с привлечением кредитных ресурсов Азиатского банка развития.
Настоящее исследование направлено на реализацию положений «Национальной концепции Республики Узбекистан по возобновляемым источникам энергии» (одобренной Сенатом Олий Мажлиса Республики Узбекистан в октябре 2008 г.) путем создания новых термоэлектрических материалов. Углубление исследований по созданию новых и дешевых термоэлектрических материалов, позволяющих повысить эффективность устройств преобразования энергии возобновляемых источников, и утилизации энергетических отходов является важным фактором, определяющим востребованность темы диссертации.
Целью исследования является выяснение физических механизмов, определяющих электропроводность и коэффициент термоэдс в силикатном стекле, легированном оксидами 3d- и 4<7-металлов, связи этих свойств с составом стекла и лигатуры, с условиями синтеза для создания научных основ синтеза эффективных термоэлектрических материалов.
Научная новизна диссертационного исследования заключается в следующем:
обнаружено новое физическое явление в силикатных стеклах - резкое возрастание удельного сопротивления и коэффициента термоэдс (до 10 и 100 раз соответственно в зависимости от состава стекла) при Т> 1000 К;
экспериментально доказаны существование нанокристаллов с размерами в 1-2 нм в силикатном стекле и структурные переходы в них при высоких температурах;
предложен диффузионный механизм образования уровней (путей) протекания заряда в легированном стекле, подтвержденный экспериментально; показано, что снижение порога протекания или его исчезновение в легированном стекле является результатом совместного действия законов диффузии и протекания;
обосновано влияние состава стекла и тина лигатуры, температуры и продолжительности легирования на порог протекания и величину электропроводности, как следствие образования диффузионной зоны вокруг частиц лигатуры и повышения электропроводности самого стекла от су ~ 10‘16 Ом'1 -см’1 до 40-400 Ом'1 -см'1 в этой зоне;
предложен и экспериментально обоснован механизм проводимости легированного стекла, объясняющий температурную зависимость проводимости в интервале 0,015-1123 К сочетанием примесной подзоны с нанокристаллами силикатов в стекле; установлена роль элсктрон-фононного взаимодействия в этих процессах;
обосновано появление минимума удельного сопротивления как результат слияния примесной зоны с валентной зоной стекла и последующего «металлического» состояния р - Т или р ~ 'Г в легированном стекле при Т ~ 77-700 К как следствие преобладания рассеяния
носителей заряда на фононах или друг на друге;
показано, что электропроводность 40-400 Ом’1 -см’1, теплопроводность 0,5-1 Вт-м'1 К'1 и коэффициент тсрмоэдс 1,1 мВ/K в области 800-1000 К приводят к повышенной термоэлектрической эффективности легированного стекла.
ЗАКЛЮЧЕНИЕ
1. Показано, что легированное стекло становится проводящим вследствие диффузии атомов лигатуры в размягченное стекло, и порог протекания соответствует началу перекрытия зон диффузии, образующихся вокруг частиц лигатуры. Объем этих зон может быть существенно больше, чем объем самих частиц лигатуры, и зависит от параметров процесса легирования (температура и продолжительность), а также от состава стекла и лигатуры. Поэтому порог протекания может наблюдаться при очень малом содержании лигатуры (~ 1 % или, возможно, даже меньше, вместо 16 об. %, предсказываемых теорией протекания).
2. Методом EXAFS показано, что на проводимость легированного стекла оказывает существенное влияние локальная структура стекла, создаваемая в процессе варки, а именно - координация атомов свинца, меняющаяся в процессе легирования. Координация атомов рутения в легированном стекле зависит как от структуры исходного стекла, так и от продолжительности процесса легирования.
3. Обнаружено аномальное возрастание сопротивления и термоэдс в легированном стекле в области температур 700-1000 К и показано, что оно является следствием структурных переходов в нанокристаллах силикатов свинца и реликтов кремнезема в стекле.
4. Определена нижняя граница концентрации носителей в легированном стекле (около 1020 см’3) и эффективная масса носителей заряда: 777et ~ 3.3-1О"77?(). Это дает основание говорить о легированном стекле как о системе с поляронной проводимостью.
5. Показано, что легирование свинцово-силикатного стекла (диэлектриком с шириной запрещенной зоны около 3,3 эВ) создает примесную подзону шириной 0,026 эВ или менее, отделенную от потолка валентной зоны небольшой (0,01-0,02 эВ) щелью. При высоких температурах изменение структуры нанокристаллов силикатов отодвигает примесную подзону от валентной зоны, и после завершения этих изменений (при Т> 950-1000 К) образец превращается в полупроводник с энергией активации проводимости Е% = 0,095 до 1,5 эВ в зависимости от состава легированного стекла и уровня легирования.
6. Установлено, что 7?(7) легированного стекла в интервале от гелиевых температур до 1200 К является следствием образования примесной подзоны и существования нанокристаллов. Нанокристаллы выступают как эффективные центры локализации свободных носителей заряда, и в легированном стекле при низких температурах одновременно действуют два механизма проводимости - активационный и прыжковый. Часто наблюдаемая в эксперименте зависимость 7?(7) = А схр(2?Г') с 0,4 < < 0,8 является следствием элсктрон-фононной связи, приводящей к изменению ширины щели с температурой.
7. Выявлен физический механизм металлической проводимости р(Т)~ Т или р(Т)~ Т~ легированного стекла вблизи комнатной температуры. Показано, что щель малой ширины между примесной подзоной и валентной зоной стекла может исчезнуть при повышении температуры, концентрация носителей в возникающей частично заполненной зоне постоянна (как в металлах), и рассеяние носителей будет основной причиной температурной зависимости проводимости.
8. Показано, что легированное силикатное стекло имеет высокую плотность электронных состояний в примесной подзоне и может быть эффективным и дешевым термоэлектрическим материалом с термоэлектрической добротностью Z7'около 2 для преобразования энергии возобновляемых источников и утилизации энергетических отходов.
Просмотров
Загрузок
hh-index
Цитаты
inLibrary — это научная электронная библиотека, построенная на парадигме открытой науки (Open Science), основными задачами которой является популяризация науки и научной деятельности, общественный контроль качества научных публикаций, развитие междисциплинарных исследований, современного института научной рецензии, повышение цитируемости узбекской науки и построение инфраструктуры знаний.
КОНТАКТЫ:
Республика Узбекистан, г. Ташкент, ул.Паркент 51, этаж 2