МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ УЗБЕКИСТАНА имени МИРЗО УЛУГБЕКА

На правах рукописи УДК 517.98

САДАДДИНОВА САНОБАР САБИРОВНА

МАРКОВСКИЕ ПРОЦЕССЫ И ПОЛУГРУППЫ ОПЕРАТОРОВ В ПРОСТРАНСТВАХ БАНАХА – КАНТОРОВИЧА

01.01.01 - математический анализ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Ташкент – 2010

Работа выполнена на кафедре «Алгебра и функциональный анализ» Национального Университета Узбекистана имени Мирзо Улугбека

Научный руководитель: доктор физико - математических наук, профессор Ганиев Иномжон Гуломджанович.

Официальные оппоненты: доктор физико - математических наук, профессор Абдуллаев Рустамбой Зайирович,

кандидат физико — математических наук Арзикулов Фарход Нематжанович.

Ведущая организация: Каракалпакский государственный университет.

Защита диссертации состоится «____»_____2011 г. в _____ часов на заседании специализированного совета Д 067.02.03 при Национальном Университете Узбекистана по адресу: 700174, Ташкент, Вузгородок, НУУз, механико-математический факультет, ауд. - 303.

С диссертацией можно ознакомиться в научной библиотеке НУУз.

Ученый секретарь специализированного совета, кандидат физико-математических наук Ю. Х. Эшкабилов

Автореферат разослан «___»____2011 г.

ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИИ

Актуальность работы. Одним ИЗ важных разделов теории ограниченных линейных операторов является теория однопараметрических полугрупп линейных операторов в банаховых и локально выпуклых при пространствах, использующаяся решении важных задач теории эргодической теории дифференциальных уравнений. вероятности, И Изучение однопараметрических полугрупп линейных операторов было начато Э. Хилле и К. Иосидой в 40-х годах ХХ столетия. Аналитическая теория полугрупп операторов, действующих в банаховых и локально выпуклых пространствах, подробно изложена в монографиях Н. Данфорда, Дж. Шварца, К. Иосиды, У. Рудина, Э. Хилле, Р. С. Филлипса и др. С последними достижениями теории однопараметрических полугрупп операторов в банаховых и локально выпуклых пространствах можно ознакомиться в монографии К. Ж. Энгеля и Р. Нагеля.

В последнее время исследованиям различных вопросов теории полугрупп операторов посвящены работы А. С. Загорского, С. В. Ясколко, С. Мюллера, В. А. Золотарева и др.

В 60-годах прошлого века Т.А. Сарымсаковым введено понятие полуполнозначной нормы для линейных операторов, действующих в локально выпуклых пространствах. Используя эти понятия Х. Махмудовым предложен новый метод исследования теории полугрупп линейных операторов в локально выпуклых пространствах.

В 30-х годах XX века в работах Л.В. Канторовича были рассмотрены решеточно-нормированные пространства и введено понятие мажорируемого оператора в этих пространствах. Дальнейшему существенному развитию теории мажорируемых операторов посвящены работы А.Г. Кусраева и др.

В начале 90-х годов прошлого века А.Е. Гутманом впервые была дана аксиоматика измеримых банаховых расслоений с лифтингом. Им же установлено, что всякое пространство Банаха–Канторовича над кольцом измеримых функций можно представить в виде измеримого расслоения банаховых пространств. В исследованиях О.Я. Бендерского и М.В. Подорожного рассмотрена техника теории измеримых расслоений на отрезке [0 1],.

В работах И. Г. Ганиева, К. К. Кудайбергенова было доказано, что всякий линейный циклически компактный оператор можно представить как измеримое расслоение линейных компактных операторов и получен векторный аналог теоремы Банаха об обратном операторе для операторов, действующих в пространствах Банаха — Канторовича над кольцом измеримых функций. И.Г. Ганиевым и К.К. Кудайбергеновым был получен векторный вариант принципа равномерной ограниченности Банаха —

Штейнгауза для операторов в пространствах Банаха – Канторовича.

Полугруппы, порожденные марковскими процессами в

функциональных пространствах, играют важную роль в теории вероятности, экономике, математической биологии, молекулярной физике, квантовой механике и т. д.

Полугруппы, порожденные марковскими процессами в пространствах L_p и пространствах непрерывных функций, эргодические теоремы для таких полугрупп, подробно изучены в монографиях и учебниках И.И. Гихмана и А.В. Скорохода, Е.Б. Дынкина, К. Иосиды, М. Лоэва, В. Феллера и др.

А.И. Жданок в своих работах разработал новый метод исследования марковских операторов, базирующийся на общей теории конечно аддитивных мер. В работе А. Е. Гутмана, А. И. Сотникова исследованы порядковые свойства пространства конечно-аддитивных переходных функций и изучены пространства линейных операторов, порожденные конечно-аддитивными переходными функциями.

Степень изученности проблемы. Г.П. Буцаном изучались полугруппы операторов в гильбертовом пространстве, зависящие от измеримого параметра. Случайные интегральные операторы в идеальных пространствах измеримых функции рассмотрены в работах J. Appell, А.С.Калитвина и П.П. Забрейко. Полугруппы операторов в банаховых и локально выпуклых пространствах достаточно хорошо изучены, но в пространствах Банаха - Канторовича до сих пор не рассматривались.

В связи с развитием общей теории мажорируемых операторов в пространствах Банаха – Канторовича над кольцом измеримых функций, естественно возникают задачи теории полугрупп операторов в этих пространствах, которые разумно решать, используя метод измеримых расслоений.

Связь диссертационной работы с тематическими планами НИР. Тема диссертационной работы «Марковские процессы и полугруппы операторов в пространствах Банаха — Канторовича» утверждена на Ученом совете механико-математического факультета НУУз 27 августа 2009 года (протокол № 1) и входит в тематику НИР, проводимых на кафедре НУУз «Алгебра и функциональный анализ».

Цель исследования. Целью диссертационной работы является развитие теории полугрупп линейных операторов для пространств Банаха — Канторовича.

Задачи исследования.

- описание полугруппы L_0 -ограниченных L_0 -линейных операторов в пространствах Банаха Канторовича;
- исследование инфинитезимальных операторов полугрупп L_0 ограниченных L_0 -линейных операторов, действующих в пространствах Банаха Канторовича;
 - установление связи между свойством сильной непрерывности

4

сильной непрерывности полугруппы операторов в слоях;

- описание полугрупп операторов, порожденные марковскими процессами в пространствах Банаха – Канторовича []. $E\ L_p$

Объекты и предмет исследования. Полугруппы L_0 -ограниченных L_0 -линейных операторов в пространствах Банаха–Канторовича и марковские процессы в пространствах Банаха – Канторовича []. $E L_p$

Методы исследований. Применены общие методы измеримых банаховых расслоений, функционального анализа, теории пространств Банаха – Канторовича, марковских процессов.

Основные положения, выносимые на защиту. На защиту выносятся: • представление L_0 - ограниченных полугруппы L_0 - ограниченных L_0 - линейных операторов в пространствах Банаха — Канторовича в виде измеримых расслоений полугрупп операторов в банаховых пространствах;

- представление сильно непрерывных полугрупп операторов в пространствах Банаха Канторовича;
- представление инфинитезимального производящего оператора при помощи измеримых расслоений полугрупп операторов;
- описание полугрупп операторов, порожденные марковскими процессами в пространствах Банаха Канторовича []. $E\,L_p$ Научная новизна.
- получено представление полугруппы L_0 -ограниченных L_0 операторов в пространстве Банаха Канторовича в виде измеримых расслоений полугрупп ограниченных операторов;
- исследованы связи между свойствами сильной непрерывности полугруппы операторов в пространствах Банаха Канторовича и сильной непрерывности полугруппы операторов в слоях;
- доказана () bo —замкнутость инфинитезимального производящего оператора полугруппы L_0 ограниченных L_0 линейных операторов в пространствах Банаха Канторовича;
- получено представление полугрупп операторов, порожденные марковскими процессами в пространствах Банаха Канторовича []; $E\,L_p\,$ доказаны аналоги статистической и индивидуальной эргодических теорем для полугруппы операторов, порожденной марковским процессом с инвариантной мерой в пространстве Банаха Канторовича []. $E\,L_p\,$

Научная и практическая значимость результатов исследования. Результаты диссертации являются новыми и могут применяться в теории можарируемых операторов в пространствах Банаха — Канторовича, в эргодической теории и их приложениях.

5

теоретический характер.

Апробация работы. Результаты диссертации докладывались на международной конференции «Теория операторов. Комплексный анализ. Математическое моделирование» в городе Волгодонске Ростовской области (2007 г.), на научной конференции, посвященной 90-летнему юбилею НУУз (2008 г.), на городском семинаре по функциональному анализу НУУз под руководством профессора В.И. Чилина (2007-2010 гг.), на семинаре «Операторные алгебры и их приложения» Институт Математики и информационных технологий АН РУз под руководством академика Ш.А. Аюпова и на кафедре НУУз «Алгебра и функциональный анализ» (2007-2009 гг.) и на научном семинаре специализированного совета Д 067.02.03 при НУУз под руководством академика А.С.Садуллаева.

Опубликованность результатов. Основные результаты диссертации опубликованы в работах [1]-[7] в виде статьей и тезисов конференций. В работах [1], [4]-[6] постановка задачи принадлежат И.Г.Ганиеву. Доказательства всех основных результатов принадлежат диссертанту.

Структура и объем диссертации. Диссертация состоит из введения, трех глав, заключения и 47 наименований использованной литературы. Объём диссертации 88 страниц. Нумерация определений, теорем, предложений, лемм и следствий самостоятельная в каждой главе: первая цифра означает номер главы, вторая — номер параграфа, третья — номер соответствующего утверждения. Формулы нумеруются в пределах главы: номер формулы состоит из номера главы и порядкового номера формулы в главе.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении дан обзор работ, относящихся к теме диссертации, а также приведено краткое содержание диссертации.

Первая глава диссертации состоит из двух параграфов. В первом параграфе приводятся необходимые определения и факты из теории полугрупп ограниченных линейных операторов банаховых пространств и из теории полугрупп, порожденные марковскими процессами в L_p -пространствах. Во втором параграфе приводятся сведения о структуре пространства Банаха –Канторовича над кольцом измеримых функций.

Пусть () Ω, Σ, \sim — измеримое пространство с полной конечной мерой, L_0 — алгебра всех комплексных измеримых функций на () Ω, Σ, \sim (равные почти всюду функции отождествляются).

Рассмотрим векторное пространство U над полем комплексных чисел $\mathbb G$.

Определение **1.2.4.** Отображение UL_0 нормой, если оно удовлетворяет следующим аксиомам:

1) $x \ge 0$; $0 \times x \times U = 0$; 3) $x y x y x y U + \le +, \in ()$. Отображение · называют разложимой нормой, если кроме 1), 2), 3) выполнена аксиома разложимости: 4) для любых $x \ U \in \mathbb{R}_{120} e \ e \ L$, \in , удовлетворяющих соотношению $\mathbb{R}_{12} x \ e \ e =$ + , существуют $_{1\,2}x\,x\,U$, \in такие, что $_{1\,2}x\,x\,x\,=$ + и $_{k\,k}x\,e$ = (1 2) k = , . В том случае, когда условие 4) справедливо лишь для дизъюнктных $_{120}e\ e\ L$, \in , норму называют дизъюнктно разложимой. Тройку (UL, · , $_0$) называют решеточно-нормированным пространством над L_0 . x U $_{\alpha \alpha \in}$ ⊂ называют () bo -сходящейся к элементу x U ∈ и Сеть $()_A$ пишут x bo x = -() \lim_{α} , если сеть ()**Ω** α∈ - (*o*)-сходится к нулю в L_0 . $x_{\alpha\alpha}$ называют () bo -фундаментальной, если сеть () () $_{AA}x$ $x_{\alpha\beta\alpha\beta}$ - (\in . Сеть () 4 () bo -сходится к нулю. Говорят, что решеточно-нормированное пространство () bo -полно, если любая () bo -фундаментальная сеть () $_{A}$ $x_{\alpha \alpha \in B}$ нем () bo сходится к некоторому элементу этого пространства. Определение 1.2.5. Разложимое (bo-полное решеточно) нормированное пространство над L_0 называется пространством Банаха-Канторовича над L_0 . Пусть X – отображение, ставящее в соответствие каждой точке $\omega \in \Omega$ некоторое банахово пространство (X () , ω , \cdot , ω) где X () $\{0\}$ ω \neq для ω ∈ Ω. Сечением X называется функция u , определенная почти всюду в

 Ω и принимающая значение $u(X(\cdot)(\cdot))$ $\omega(\omega) \in \mathrm{для}\ \mathrm{Bcex}\ \omega \in \mathrm{dom}(\cdot)\ u$, где

Пусть L – некоторое множество сечений.

dom() и есть область определения u.

Определение **1.2.6.** Пара () XL, называется измеримым банаховым расслоением над Ω , если

2) функция $_{()}$ dom $_{()}$ () $_{X}$ $_{C}$ $_{C}$ $_{C}$

3) для каждой точки $\omega \in \Omega$ множество $\{\ (\)\ \mathrm{dom}(\)\}\ c\ c\ L\ c\ \omega\ \omega\ :\in\ ,\in$ плотно в $X\ (\)$. ω

Вместо () XL, будем писать просто X.

Течение s называется ступенчатым, ()()() Ai если $s \in X$ $C \times X$ $C \in X$ $C \times X$

 $_{iiA}c\ LA\ i\ n$ \in , \in Σ , = , - χ характеристическая функция. Сечение u 1 ,

называется измеримым, если для каждого A $A \in \Sigma$, $< +\infty \propto$ () найдется такая последовательность () $_{n\,n\,N}s$ $_{\in}$ ступенчатых сечений, что ω ω $^{-}$ \rightarrow для почти всех $\omega \in A$

su

$$()()()0^n x$$

Пусть MX() Ω , — множество всех измеримых сечений. Символом $_0LX()$ Ω , обозначим факторизацию MX() Ω , по отношению равенства почти всюду. Через u^{\wedge} обозначим класс из $_0LX()$, Ω , содержащий $^{\wedge} \in \Omega$, измеримое сечение $uMX \in \Omega$, . () Далее, для каждого элемента $_0$

uLX()

вводится векторная норма 0

^=
$$\in$$
 Пара ($LX_0(\)$ Ω , , \cdot) является $u\;u\;L\left(\)$. ω

пространством Банаха – Канторовича над L_0 .

Пусть () $^{\infty}$ L Ω – множество всех комплексных существенно ограниченных измеримых функций на () Ω , Σ , $^{\infty}$. L () $^{\infty}\Omega$ –факторизация () $^{\infty}$ L Ω по отношению равенства почти всюду. Обозначим $^{\infty}$ L Ω , = $_{X()}$ { () $\|$ () $\|$ ()}. u M X u ω $_{\omega}$ $^{\infty}$ \in Ω , : \in Ω L

()X

 $^{\circ}$ L Ω , называются существенно ограниченными измеримыми Элементы () X

сечениями расслоения X. Через $LX()^{\infty}\Omega$, обозначается множество, состоящее из классов эквивалентности существенно ограниченных измеримых сечений. Известно, что $LX()^{\infty}\Omega$, пространство Банаха – Канторовича над $L()^{\infty}\Omega$.

Пусть X – измеримое банахово расслоение над Ω . Рассмотрим произвольный числовой лифтинг $p \ L \ (\) \ (\)^{\infty \infty} \colon \Omega \to \Omega \ L \ .$

Определение **1.2.7.** Отображение () () $\rho_X L X X^{\infty}$: Ω , $\rightarrow \Omega$, L называется векторнозначным лифтингом, ассоциированным с числовым лифтингом p, если выполняются следующие условия:

 $^{\wedge, \infty} \in \Omega$, плотно в X() ω для всех $\omega \in \Omega$. д) Множество $\{ \rho \ \omega_X()() : () \ u \ u \ L \ X \}$

Пусть X – измеримое банахово расслоение над Ω . Оператор $_{0\,0}\,T\,L\,L:(\;,\;)\,(\;,\;)\,\Omega\;\mathsf{X}\to\Omega\;\mathsf{X}$ называется L_0 -линейным, если

$$_{1\,1}(\ T\,x\,+\,)=Tx\)+\,Tx\)$$
 $_{1\,2\,2\,1\,2\,2}$ $\lambda\ \lambda\ \lambda\ \chi\ (\ (\ для\ всех$

 $\lambda \lambda, \in \Lambda, \in L \times L (\Lambda, \Lambda). \Omega \times L_{0}$

линейный оператор ${}_{00}TLL:(,)(,)\Omega X \to \Omega X$ называется

 L_0 -ограниченным, если существует такой $CL \in {}_0$, что $T \times C \times () \le$ при всех ${}_0$ $\times L \in (,)$. $\Omega \times \Lambda$

 L_0 -ограниченного L_0 - линейного оператора T L_0 -значная норма задается по правилу T T x x = : \leq sup () , $\{$ 1 $\}$ и относительно такой нормы пространство всех L_0 - ограниченных L_0 - линейных операторов является пространством Банаха — Канторовича.

Во второй главе диссертации изучаются полугруппы L_0 - ограниченных L_0 - линейных операторов и доказывается вариант классической теоремы о полугруппах в пространстве Банаха – Канторовича.

В первом параграфе второй главы изучаются полугруппы операторов и доказывается, что L_0 - ограниченная полугруппа L_0 - ограниченных L_0 - линейных операторов в пространстве Банаха — Канторовича разлагается измеримое расслоение полугрупп ограниченных операторов.

Пусть $_{0\,0}$: (,) (,) $TLL_t\Omega X \to \Omega X$ семейство L_0 - ограниченных L_0 - линейных операторов, $t\in +\infty$ [0;).

Определение **2.1.1.** Семейство $\{\ \}_{[0;\)}$

 $T_{\in +\infty}$ назовем полугруппой

 t_{t}

операторов в пространстве Банаха – Канторовича $_0$ L (,), Ω X если выполняются $TI_0^{=u}$, $TTT_{tsts}^{=ts}$ = при всех ts, [0;), \in + ∞ где I – тождественный оператор в $_0L$ (,). Ω X

Если существует $_0$ C L \in , такое, что T C $_t$ \leq при всех t \in + ∞ [0;), то полугруппу назовем L_0 - ограниченной полугруппой.

Соответственно, если существует $CL() \cong \Omega$ такое, что $TC_t \leq$ при всех $t \in +\infty$ [0;), то полугруппу назовем $L() \cong \Omega$ - ограниченной полугруппой. Пусть ():()() $T_t \omega \omega \omega X \to X$ полугруппа ограниченных линейных операторов в банаховом пространстве $X() \omega$ для любого $\omega \in \Omega$, $t \in +\infty$ [0;). Определение **2.1.2.** Семейство $\{\}_{(0;)}$

T ω ∈ +∞ назовем измеримым

 $()^{t}$

расслоением полугрупп операторов, если для каждого $t \in +\infty$ [0;) имеет место () () (,) $T \, x \, M_t \omega \, \omega \in \Omega \, \mathsf{X}$ при всех $x \, M \in \Omega \, \mathsf{X}$ (,).

 $T\omega_{\in +\infty}$ – измеримое расслоение ограниченных линейных () t

операторов, то линейный оператор $_{0\ 0}^{9}$: (,) (,), $T\ L\ L\ _{t}$ $\Omega\ X\to \Omega\ X$ определенный равенством () (), $T\ x\ T\ x^{\ t\ t}$ = $\omega\ \omega$ служит L_{0} -ограниченным L_{0} -линейным оператором.

Основным результатом первого параграфа второй главы является следующая теорема.

Теорема **2.1.2.** Если $\{ \{ \{ \} \} \}_{[0;1]} TL L_{\in +\infty}$

$$: (,)(,)^{t}_{t}$$

$$\Omega X \rightarrow \Omega X - L_{0}$$

ограниченная полугруппа L_0 - ограниченных L_0 - линейных операторов, то существует измеримое расслоение ограниченных полугрупп линейных операторов () : () () $T_t \omega \omega \omega X \to X$ такое, что ()() () () $\rho \omega \omega \rho \omega_{XX}$ $T \times T \times_{tt} = \text{для всех } x L (,) \in \Omega X \text{ и } \omega \in \Omega.$

Во втором параграфе второй главы определяются сильно непрерывные полугруппы операторов в пространствах Банаха — Канторовича и исследуются связи между свойствами сильной непрерывности полугруппы операторов в пространствах Банаха — Канторовича и сильной непрерывности полугруппы операторов в слоях.

Определение **2.2.1.** Полугруппу L_0 - ограниченных L_0 - линейных операторов $\{\}_{[0:]}$

 $T_{\in +\infty}$ в $_0L$ (,) Ω X назовем сильно непрерывной, если

 $T\,x\,x_{\,t}$ – () O -сходится к нулю в L_0 при $t\to 0$ для каждого $_0$

$$xL \in \Omega X(,)$$

Следующая теорема является основным результатом второго параграфа второй главы:

$$T_{\in +\infty}$$
– $L\left(\ \right)^{\infty}\Omega$ - ограниченная полугруппа операторов.

Пусть
$$\left\{ \right. \right\}_{t_{t}[0;\,)}$$

Теорема **2.2.1.** Если измеримое расслоение полугруппы $T \omega_{\in +\infty}$ сильно непрерывно в X() ω для почти всех $\omega \in \Omega$, то $\{\}_{[0;)}$

 $()^{t}$ $T_{\in +\infty}$ сильно непрерывная полугруппа операторов в $_0L$ (,). Ω X { } _{[0;)} В третьем параграфе второй главы изучаются измеримые расслоения замкнутых операторов. Пусть $_{0}$ $_{0}$ A L L : (,) (,) Ω X \to Ω X - L_{0} - линейный оператор, с областью определения $_0$ D () (,) A L X \subset Ω и пусть A() ω – линейный замкнутый оператор из X () ω в X () ω с областью определения D (()) Aω для почти всех ω ∈ Ω. Определение **2.3.2.** Семейство $\{A(\cdot), \omega \omega \in \Omega\}$ назовем измеримым расслоением замкнутых операторов, если $A \times M()() (),) \omega \omega \in \Omega X$ для любого $x M x D A \in \Omega X \in (,), () (()). \omega \omega$ Если $\{A(\cdot), \omega \omega \in \Omega\}$ – измеримые расслоения замкнутых операторов, то линейный оператор определенный равенством $A \, x \, A \, x$ () (), $\omega \, \omega$ $_{\wedge}$ = (1) является L_0 -линейным оператором из $_0L(\ ,\)$ Ω X в $_0L(\ ,\)$ Ω X с областью определения $^{\wedge} \in \Omega \in D \in \Omega$ D () $A = \{x L X x A_0(,) : () (()) . \omega \omega$ для почти всех $\omega \}$ Теорема **2.3.2.** Если $\{A(\cdot), \omega \omega \in \Omega\}$ – измеримые расслоения замкнутых операторов, то L_0 -линейный оператор ${}_{0\,0}A\ L\ L:(\ ,\)\ (\ ,\)\ \Omega\ X\to \Omega\ X$ определенный равенством (1), является () bo -замкнутым оператором. В четвертом параграфе второй главы изучается инфинитезимальный производящий оператор полугрупп операторов в пространствах Банаха – Канторовича и доказывается () bo -замкнутость такого оператора. Пусть 0.0: (,) (,) $TLL_t\Omega X \to \Omega X - L_0$ - ограниченная полугруппа L_0 - ограниченных

 L_0 - линейных операторов, (): () () $T_t \omega \omega \omega X \rightarrow X$ соответствующее

для почти всех $\omega \in \Omega$ и A() ω –

{ } [0;)

измеримое расслоение полугрупп операторов и $T \omega_{\in +\infty}$ – сильно непрерывно

 $()^{t}$

инфинитезимальный производящий оператор полугруппы $\{\}_{[0;)} T \omega_{\in +\infty}$ для

 $()^{t}$

почти всех $\omega \in \Omega$.

Определим линейный оператор ${}_{0}A$ A L X : () (,) D \to Ω равенством (1). Определение **2.4.1.** Если $\{A(\), \ \omega \ \omega \in \Omega\}$ — измеримые расслоения замкнутых операторов, то L_{0} -линейный оператор A, определенный равенством (1), назовем инфинитезимальным производящим оператором L_{0} -ограниченной полугруппы $\{\ \}_{[0;\)}$.

Следующий результат является основным результатом второй главы:

Теорема **2.4.1.** Пусть $\{\}_{[0;)}$

 $T_{\in +\infty}$ – L_0 -ограниченная полугруппа

операторов, причем соответствующее измеримое расслоение полугрупп $T \omega_{\in}$ $_{+\infty}$ — сильно непрерывна для почти всех $\omega \in \Omega$. Тогда

 $\left\{ \, \right\}_{\left[0;\,\right)} t$

1) A является () bo - плотно определенным и () bo -замкнутым

оператором; =
$$-$$
 где () 1

 $^{tA}Txboex_{t}$

 $() \lim_{n \to \infty} n^n$

2)₀ε → **ε**

ATI;

 $x L \in \Omega X (,)$ вектор-функция,

3) для любого о

 $t T x \rightarrow$ удовлетворяет

$$dT_{x AT x T Ax dt} = =$$

дифференциальному уравнению.

t t

В третьей главе диссертации описываются полугруппы операторов, порожденные марковскими процессами в пространствах Банаха –

Канторовича $EF[\]$ и доказываются аналоги статистической и индивидуальной эргодических теорем для таких полугрупп.

11

В первом параграфе третьей главы рассматриваются полугруппы операторов, порожденные марковскими процессами в пространствах Банаха – Канторовича []. $E\ L_p$

Пусть E – идеальное пространство измеримых функций на (,,) $\Omega \Sigma \propto (S,,)$ В m – пространство с мерой m, (S,,) L m $_p$ В – банахово пространство всех измеримых по Лебегу функций на (S,,). В m Обозначим символом [] E L_p – пространство всех измеримых функций K на $\Omega \cdot S$, удовлетворяющих следующим двум условиям:

а) класс эквивалентности функции $x \, K \, x \, \Box \, (\ ,\) \, \omega$ входит в $(\ ,\) \, L \, S \, m_{\,p}$ для почти всех $\omega \in \Omega$;

 $\omega \omega \square K$ · измерима и ее класс эквивалентности K

б) функция $(\ ,\)_{L_{p}}$ входит в E.

Тогда ($EL[\],_p\cdot$) — пространство Банаха — Канторовича над E и является идеальным пространством измеримых функций на $\Omega\cdot S$. Основным результатом первого параграфа треьей главы является следующая теорема.

Теорема **3.1.1.** Пусть $P \ t \ x \ B \ (\ ,\ ,\)$ – марковский процесс с инвариантной мерой $m \ t$, 0. > Тогда

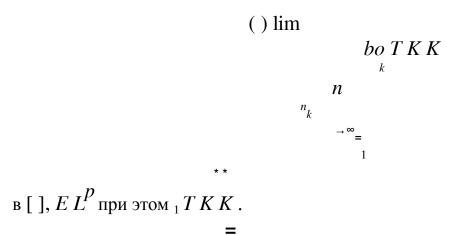
$$TKxKyPtxdy\omega\omega = \int_{S} ()(,)(,)(,)_{t}$$

определяет L_0 - ограниченный L_0 - линейный положительный оператор в $_0[\], L$

$$L_{p}$$
такой, что , T TT_{tsts+} = при этом T_{t} 1 = 1 и T K K_{t} \leq при всех t \in + ∞ $(0;$).

Во втором параграфе третьей главы доказывается статистическая эргодическая теорема для полугрупп операторов, порожденных марковским процессом с инвариантной мерой, в пространствах Банаха – Канторовича [] $E\ L_p$. Основным результатом этого параграфа является следующая теорема.

Теорема **3.2.2.** Для любой функции [], 1, $KELp \in \geq_p$ существует предел



В третьем параграфе третьей главы доказывается индивидуальная эргодическая теорема для полугрупп операторов, порожденных марковским процессом с инвариантной мерой, в пространствах Банаха – Канторовича

12 []. E L_p Основным результатом этого параграфа является следующая Теорема **3.3.2.** Для любой функции $_0$ [] K L L \in $_p$ последовательность 1^n $\sum_{K} \frac{(C) O - \operatorname{cxoдutcg} K}{K} K_* B_0$ [] L L_p Для любого P > 1. T K благодарность своему научному

Пользуясь случаем, автор выражает руководителю профессору Иномжану Гуломджановичу Ганиеву за помощь при работе над диссертацией и профессору Владимиру Ивановичу Чилину за советы и полезные обсуждения результатов работы.

ЗАКЛЮЧЕНИЕ

Диссертационная работа посвящена развитию теории полугрупп линейных операторов для пространств Банаха — Канторовича. Получены следующие результаты:

Доказано, что L_0 - ограниченная полугруппа L_0 - ограниченных L_0 - линейных операторов в пространстве Банаха — Канторовича разлагается в измеримое расслоение полугрупп ограниченных операторов;

Исследованы связи между свойствами сильной непрерывности полугруппы операторов в пространствах Банаха — Канторовича и сильной непрерывности полугруппы операторов в слоях;

Доказана () во -замкнутость инфинитезимального производящего

оператора полугруппы L_0 - ограниченных L_0 - линейных операторов в пространствах Банаха – Канторовича;

Дано представление полугруппы в пространствах Банаха — Канторовича с помощью инфинитезимального производящего оператора. Получены представления полугрупп операторов, порожденные марковскими процессами в пространствах Банаха — Канторовича []; $E\ L_p$ Доказаны аналоги статистической и индивидуальной эргодических теорем для полугруппы операторов, порожденной марковским процессом с инвариантной мерой в пространстве Банаха — Канторовича []. $E\ L_p$ Все результаты являются новыми.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

- 1. Ганиев И.Г., Сададдинова С.С. Сильно и равномерно непрерывные полугруппы операторов в пространствах Банаха Канторовича// Исследования по современному анализу и математическому моделированию. —Владикавказ, 2008. С. 175-185.
- 2. Сададдинова С.С. Измеримые расслоения замкнутых операторов // Современные проблемы математики, механики и информационных технологий. Материалы Республиканской научной конференции. Ташкент, 2008. С. 241—243.
- 3. Сададдинова С.С. Инфинитезимальный производящий оператор полугрупп операторов в пространствах Банаха-Канторовича // Вестник НУУз. Ташкент, 2009. № 1. С. 63-67.
- 4. Ганиев И.Г., Сададдинова С.С. Полугруппа операторов в пространствах Банаха-Канторовича// Узб. Мат. Жур. Ташкент, 2009. № 2. С. 42-48.
- 5. Ганиев И.Г., Сададдинова С.С. Индивидуальная эргодическая теорема для полугрупп операторов в пространствах Банаха Канторовича [] E L_p // Дифференциальные уравнения и их приложения. Материалы Республиканской научной конференции. Нукус, 2009. С. 78-82.
- 6. Ганиев И.Г., Сададдинова С.С. Марковские процессы и полугруппы в пространствах Банаха Канторовича [] $E L_p /\!/$ Киев, Украинский

- математический конгресс. http://imath.kiev.ua/~congress 2009/Abstracts.
- 7. Сададдинова С.С. Об одной полугруппе операторов в пространствах измеримых по Бохнеру функций // Вестник НУУз. Ташкент, 2010. № 3. С. 169-172.

14

Физика-математика фанлари номзоди илмий даражасига талабгор Сададдинова Санобар Сабировнанинг 01.01.01 – математик анализ ихтисослиги бўйича «Марков жараёнлари ва Банах - Канторович фазоларидаги операторлар ярим группалари» мавзусидаги диссертациясининг

РЕЗЮМЕСИ

Таянч сўзлар: вектор қийматли лифтинг, Банах – Канторович фазоси, ўлчовли банах тахламалари, операторлар ярим группалари, ҳосилавий оператор, Марков жараёнлари.

Тадқиқот объектлари: Банах — Канторович фазоларида операторлар ярим группалари ва $[\]$ E L_p Банах — Канторович фазоларида Марков жараёнлари.

Ишнинг мақсади: Операторлар ярим группалари назариясини Банах – Канторович фазолари учун умумлаштириш.

Тадқиқот методлари: ўлчовли банах тахламалари, функционал анализ, Банах – Канторович фазолари ва марков жараёнлари назариялари методлари.

Олинган натижалар ва уларнинг янгилиги: Олинган натижалар янги ва қуйидагилардан иборат:

- Банах – Канторович фазоларида L_{0} -чегараланган L_{0} -чизикли

операторлар ярим группаларининг чегараланган операторлар ярим группалари ўлчовли тахламалари кўринишидаги тасвири;

- Банах Канторович фазоларида операторлар ярим группаларининг кучли узлуксизлиги билан қатламлардаги операторлар ярим группаларининг кучли узлуксизлиги хоссалари орасидаги богланиш;
- Банах Канторович фазоларида L_0 -чегараланган L_0 -чизикли операторлар ярим группалари хосилавий операторининг операторлар ярим группалари ўлчовли тахламалари кўринишидаги тасвири;
- [] EL_p Банах Канторович фазоларида Марков жараёнлари вужудга келтирадиган операторлар ярим группалари тасвири ва шундай ярим группалар учун статистик ва индивидуал эргодик теоремалар вариантлари.

Амалий аҳамияти: диссертация натижалари назарий ҳарактерга эга. Тадбиқ этиш даражаси ва иқтисодий самарадорлиги: Ишда келтирилган натижалар ва методлар функционал анализнинг Банах — Канторович фазоларида операторлар назарияси ва эргодик назария ҳамда унинг тадбиқларидан махсус курслар ўқишда қўлланилиши мумкин. Фойдаланиш соҳаси: Банах — Канторович фазолари назарияси, эргодик назария ва унинг амалий тадбиқлари.

15 **РЕЗЮМ**Е

Диссертации Сададдиновой Санобар Сабировны на тему: «Марковские процессы и полугруппы операторов в пространствах Банаха – Канторовича»

на соискание ученой степени кандидата физико-математических наук по специальности 01.01.01 – математический анализ

Ключевые слова: векторнозначный лифтинг, пространство Банаха – Канторовича, измеримое банахово расслоение, полугруппы операторов, инфинитезимальный оператор, марковские процессы.

Объекты исследования: полугруппы операторов в пространствах Банаха – Канторовича и марковские процессы в пространствах Банаха – Канторовича []. $E\,L_p$

Цель работы: Целью диссертационной работы является развитие теории полугрупп операторов для пространств Банаха — Канторовича. Методы исследования: Применены общие методы измеримых банаховых расслоений, функционального анализа, теории пространств Банаха-Канторовича, марковских процессов.

Полученные результаты и их новизна: Все полученные результаты являются новыми и состоит из следующих:

- получено представление полугруппы $L_{\scriptscriptstyle 0}$ -ограниченных $L_{\scriptscriptstyle 0}$ операторов в пространстве Банаха – Канторовича в виде измеримых расслоений полугрупп ограниченных операторов;
- исследованы связи между свойствами сильной непрерывности полугруппы операторов в пространствах Банаха – Канторовича и сильной непрерывности полугруппы операторов в слоях;
- представление инфинитезимального производящего оператора L_0 -линейных L_0 -ограниченных операторов полугруппы при помощи измеримых расслоений полугрупп операторов;
- получено представление полугрупп операторов, порожденные процессами марковскими И доказаны аналоги статистической индивидуальной эргодических теорем для таких полугрупп в пространствах Банаха – Канторовича []. EL_n

Практическая значимость: работа носит теоретический характер. Степень внедрения и экономическая эффективность: Результаты и методы диссертации могут быть использованы при чтении специальных курсов по функциональному анализу и теории мажорируемых операторов в пространствах Банаха – Канторовича, в эргодической теории и их приложениях.

Область применения: Теория пространств Банаха – Канторовича, эргодическая теория и их приложения.

16 RESUME

Thesis of Sadaddinova Sanobar Sabirovna

on the scientific degree competition of the doctor of philosophy in physics and mathematics on speciality 01.01.01 -mathematical analysis, subject:

«Markov processes and semigroup operators in Banach – Kantorovich spaces»

Key words: vector valued lifting, Banach – Kantorovich space, measurable Banach bundles, semigroup operators, Markov processes.

Subject of the inquiry: semigroup operators in Banach – Kantorovich spaces and Markov processes in Banach – Kantorovich spaces $E[L_n]$. Aim of the inquiry: The aim of the thesis is generalization of the theory of semigroup operators for Banach – Kantorovich spaces.

Methods of inquiry: In the work methods of measurable Banach bundles, of functional analysis, of the theory of Banach - Kantorovich spaces, of Markov processes are used.

The results obtained and their novelty: All obtained results of the thesis are new and consist of the following:

- representation of the L_0 -bounded semigroup of L_0 -bounded L_0 -linear operators in Banach Kantorovich spaces in the form of a measurable bundle of semigroups of bounded operators;
- representation of strongly continuous semigroups of operators in Banach Kantorovich spaces with of strongly continuous semigroups of operators of bundles is discribed;
- representation of infinitezimial operators of the semigroup of L_0 -bounded L_0 -linear operators with the help of measurable bundle of semigroups of operator is given;
- description of the semigroup operators appeared in the result of Markov processes in Banach Kantorovich spaces $\mathrm{E}[L_p]$ and the variants of the static and individual ergodic theorem for all.

Practical value: The work has a theoretical character.

Degree of embed and economic effectivity: The results and methods introduced in the work can be used in special courses on functional analysis, of the theory of Banach – Kantorovich spaces and the of ergodic theory. **Field of application:** The theory of Banach – Kantorovich spaces, the ergodic theory.