МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

ТАШКЕНТСКИЙ ХИМИКО – ТЕХНОЛОГИЧСКИЙ ИНСТИТУТ

На правах рукописи УДК 666.11: 546.815

АДИНАЕВ ХИДИР АБДУЛЛАЕВИЧ

РАЗРАБОТКА СОСТАВОВ И ТЕХНОЛОГИИ ПОЛУЧЕНИЯ СВИНЕЦСОДЕРЖАЩИХ СТЕКОЛ И СИТАЛЛОВ

05.17.11 – Технология силикатных и тугоплавких неметаллических материалов

АВТОРЕФЕРАТ

диссертации на соискание учёной степени кандидата технических наук

Работа выполнена на кафедре «Технология силикатных материалов» Ташкентского химико-технологического института

Научный руководитель: доктор химических наук, профессор

Исматов Абдулла Ахмедович

Официальные оппоненты: доктор технических наук, профессор

Касимова Сталина Салиховна

кандидат технических наук

Кадирова Дилором Салиховна

Ведущая организация: Институт общей и неорганической

химии АН РУз

Защита диссертации состоится 9 октября 2010 года в 10^{00} часов на заседании Специализированного совета Д.067.24.01 при Ташкентском химикотехнологическом институте по адресу: 100007, г. Ташкент, ул. М.Улугбека, 41.

С диссертацией можно ознакомиться в библиотеке Ташкентского химикотехнологического института по адресу: 100011, г. Ташкент, ул. А.Навои 32.

Автореферат разослан 6 сентября 2010 г.

Отзывы на автореферат (в двух экземплярах), заверенные гербовой печатью, просим направить по адресу: 100011, г. Ташкент, ул. А.Навои 32. ТХТИ, учёному секретарю Специализированного совета Д.067.24.01.

Учёный секретарь Специализированного совета, доктор технических наук, доцент

Мирзакулов Х.Ч.

ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИИ

Актуальность работы. В 2005 г. Президентом РУз И.А.Каримовым издан указ об усилении работ по освоению выпуска новой продукции, приводящей к снижению затрат на импорт. Указ в полной мере относится и к таким изделиям силикатной промышленности, как дорожно-сигнальные знаки, ковровомозаичные панно и витражи, а также выпуску изделий со специфическими свойствами, например спаивающими и герметизирующими средствами.

Безопасность движения на дорогах напрямую связана с обустройством их современными средствами сигнализации, т.е. дорожными катафотами. По данным ООН полное обустройство автомобильных дорог позволяет снизить число аварий почти на 20%. Основой любого дорожного знака является обращенная к участникам движения световозвращающая поверхность, которая несет необходимую для водителя информацию и обеспечивает её распознование в любое время дня и ночи. Световозвращение на пленке достигается за счет использования микростеклошариков, которые и являются основным материалом, обуславливающим светотехнические характеристики светоотражающих дорожных знаков. Для получения катафот также необходимо стекло с высоким показателем преломления, устойчивое к перепадам температур и хорошей химической стойкостью. В данном случае речь идёт о массивных (объемных) деталях сигнализации, устанавливаемых у обочин дорог и оврагов.

В градостроительстве наиболее ярким и необычным декоративным украшением стеклянных окон и дверей являются витражи или декорированные стекла. Витражное стекло является композицией окрашенных стекол, разделенных металлической растяжкой. К сожалению, такие стекла в Узбекистан завозятся из-за границы за счёт валютных средств, чего можно избежать, так как Узбекистан имеет достаточную сырьевую базу для налаживания выпуска таких стекол на предприятиях Республики.

Перевод легкоплавких стекол в ситаллы, во-первых улучшает эксплуатационно-механические свойства, во-вторых, повышает их химическую стойкость, в-третьих предотвращает изменение окраски деталей под воздействием дождя, снега, ветра и т.д. Этим решается вопрос о выпуске изделий со специфическими свойствами для предприятий «Узкимёсаноат», «Узкурилишматериаллари» и др.

В данной работе рассматриваются, во-первых, вопросы проектирования и синтеза новых высокоэффективных и малоэнергоёмких стекол на основе свинцовосиликатной системы, также изготовления на ИХ основе светоотражающих стеклошариков ДЛЯ дорожных знаков автодорожной техники. Во-вторых, получение окрашенных стекол вопрос изготовления декоративных панно и витражей, в-третьих, позволяют получать изделия со специфическими свойствами.

Степень изученности проблемы. На сегодняшний день имеется ряд исследований, направленных на использование стекол системы PbO-ZnO-SiO $_2$ при производстве дорожно-сигнальных знаков. Однако, вопросу получения

стеклошариков и катафот на основе самой системы $PbO-SiO_2$ не уделено должного внимания. Разработка прозрачных и окрашенных легкоплавких стекол для получения стеклошариков, для изготовления витражей и других изделий является новой.

Цель и задачи исследования. Целью первой части работы является экспериментальное и теоретическое определение условий синтеза, определение технологических параметров и изучение физико-химических свойств стекол на основе системы PbO-SiO₂ без добавок и с добавками B_2O_3 , Na_2O , CaO и Al_2O_3 . Вторая часть посвящена получению окрашенных стекол за счёт добавок Cr_2O_3 , Mn_2O_3 , Fe_2O_3 и Ni_2O_3 для изготовления витражей. В третей части осуществлена разработка составов ситаллов и выявление технологических параметров их получения за счёт добавки нетрадиционных нуклеаторов Y_2O_3 , Ce_2O_3 , Nd_2O_3 и Er_2O_3 в сочетании с традиционными нуклеаторами кристаллизации — Cr_2O_3 , TiO_2 , ZrO_2 и WO_3 .

В соответствии с намеченной целью были поставлены следующие задачи:

- изучение стекол системы $PbO-SiO_2$ без добавки и с добавками одного, двух, трех и четырех оксидов с целью снижения температуры варки стёкол;
- изучение основных физико-химических свойств (плотности, показателя преломления и др.) синтезированных стёкол экспериментальным и расчетным путями (по Аппену, Демкиной) и сопоставление полученных параметров;
- определение при нагревании фазовых превращений компонентов шихт методами рентгенографии, термографии, электронной микроскопии и инфракрасной спектроскопии;
- анализ полученных результатов с точки зрения практического применения стёкол в обустройстве дорог дорожно-сигнальными знаками;
- получение декоративных панно и витражей на основе синтезированных окрашенных стекол;
- возможность получения свинецсодержащих ситаллов в тройных системах, содержащих Y_2O_3 , Ce_2O_3 , Nd_2O_3 и Er_2O_3 и традиционные нуклеаторы кристаллизации Cr_2O_3 , TiO_2 , ZrO_2 и WO_3 ;
- определение условий получения (температура, выдержка при максимальной температуре, количество и вид добавки) окрашенных стекол;
- изучение окрашенных стекол традиционными методами физико-химического анализа;
- определение областей кристаллизации методами массовой кристаллизации;
- проверка полученных результатов в условиях промышленных предприятий, эксплуатации дорог и оформлении зданий;
- оценка эффективности производства разработанных материалов и рекомендации по их применению.

Предмет исследований. Предметом исследования являются:

- физико-химические и физико-механические свойства опытных стёкол и образцов из них, нахождение оптимальных составов и технологии их получения, а также проведение производственных испытаний;

- стекла, микростеклошарики и ситаллы, полученные в лабораторных и полупромышленных условиях;
 - технологические схемы получения изделий различного назначения;
- полученные на основе предложенных технологий дорожно-сигнальные знаки, декоративные панно и витражи.

Объект исследования. Для реализации вышеотмеченной цели и задач объектами исследования выбраны:

- прозрачные стекла, синтезированные из смеси реактивных материалов Pb_3O_4 и SiO_2 без добавки и с добавками H_3BO_3 , Na_2CO_3 , $CaCO_3$ и Al_2O_3 в пересчёте на соответствующие оксиды от 1 до 5 мас.%;
- прозрачные и окрашенные стекла, полученные на основе тройных систем, содержащих Cr_2O_3 , Mn_2O_3 , Fe_2O_3 , Ni_2O_3 , Y_2O_3 , Ce_2O_3 , Nd_2O_3 и Er_2O_3 ;
- микрошарики, полученные на основе оптимальных составов с добавкой H_3BO_3 и $NaNO_3$ путем оплавления частиц стеклогранулята под воздействием высокотемпературного газовоздушного пламени;
- стеклокристаллические материалы, полученные в лабораторных и полупроизводственных условиях методом двухстадийной кристаллизации на основе стёкол, содержащих Y_2O_3 , Ce_2O_3 , Nd_2O_3 , Er_2O_3 , Cr_2O_3 , TiO_2 , ZrO_2 и WO_3 с использованием как реактивного, так и природного сырья;
- дорожно-сигнальные знаки, катафоты и художественные детали, изготовленные на основе разработанных стекол и микрошариков до и после эксплуатации.

Методы исследований. Работа выполнена с использованием современных методов физико-химического анализа, рентгенофазовый, таких как электроннодифференциально-термический, кристаллооптический, микроскопический, химико-аналитический. Также применены традиционные методы определения физико-химических И механических свойств синтезированных стекол.

Основные положения, выносимые на защиту:

- физико-химические закономерности, технология и техникоэкономическое обоснование изготовления дорожных знаков по следующей цепочке: прозрачные стекла (на основе системы PbO-SiO₂ с добавками B_2O_3 , Na_2O_3 , CaO и Al_2O_3) \rightarrow микростеклошарики \rightarrow дорожно-сигнальные знаки;
- материалы, предназначенные для применения в современной декорации: окрашенные стекла (стёкла на основе системы PbO-SiO₂ с добавками Cr_2O_3 , Mn_2O_3 , Fe_2O_3 и Ni_2O_3) \rightarrow декорированное изделие (панно и витражи);
- материалы новой техники: стекла с нуклеаторами кристаллизации на основе системы PbO-SiO₂ с добавками Y_2O_3 , Ce_2O_3 , Nd_2O_3 , Er_2O_3 , Cr_2O_3 , TiO_2 , ZrO_2 и WO_3) \rightarrow ситаллы \rightarrow радиационно устойчивые изделия.

Научная новизна. В системе $PbO-SiO_2$ два состава (70% $PbO+30\%SiO_2$ и $80\%PbO+20\%SiO_2$) определены как оптимальные составы для получения на их основе микростеклошариков, катафот и художественных изделий. Выбор оптимальных составов обусловлен следующими факторами: во-первых, при таких соотношениях PbO и SiO_2 образуются эвтектические смеси с низкой

температурой варки; во-вторых, 70-80% - ное присутствие РьО обеспечивает высокие показатели светопреломления.

Впервые проведены систематические исследования двойной системы РьО- SiO_2 , содержащей в мас.% одну (B_2O_3 -2%), две (B_2O_3 -1% и Na_2O -1%), три (В₂О₃-0,67%, Na₂O-0,67% и СаО-0,66%) и четыре (В₂О₃-0,5%, Na₂O-0,5%, СаО-0.5% и $Al_2O_3-0.5\%$) разновидности добавок. Выявлено положительное воздействие единовременного введения четырех видов добавок на снижение варки и сохранение основных физико-химических свойств температуры светопреломления, коэффициент (плотность, показатель термического расширения и т.к.) по сравнению с введением в состав стекла одного оксида B₂O₃. Так, введение в шихту добавки B₂O₃ увеличивает взаимную активность и реакционную способность оксида свинца и кварцевого песка, способствуя стеклообразованию при относительно низких температурах, NaNO₃ улучшает гомогенизацию и осветление стекломассы из-за бурного выделения NO₂ и кислорода при варке, CaO и Al₂O₃ повышают устойчивость стекол к кристаллизации.

Показана возможность перехода от бинарной системы $PbO-SiO_2$ путем осуществления изо- и гетеровалентных замен типа $Pb^{2+} + Si^{4+} \rightarrow 2R^{3+}$ к трехкомпонентной системе $PbO-R_2O_3-SiO_2$, где R-Y, Ce, Nd, Er, Cr, Mn, Fe и Ni. Впервые в этих системах синтезированы прозрачные и окрашенные стекла. Показана возможность регулирования физико-химических свойств этих стекол путем изменения количественного соотношения PbO, R_2O_3 и SiO_2 и вида вводимых в состав стекла оксидов: Y_2O_3 , Ce_2O_3 , Nd_2O_3 , Er_2O_3 , Cr_2O_3 , Mn_2O_3 , Fe_2O_3 и Ni_2O_3 .

Впервые на основе тройных систем, содержащих Ce_2O_3 , Nd_2O_3 и Er_2O_3 , с дополнительным вводом WO_3 получены стеклокристаллические материалы, отличающиеся по сравнению с исходным стеклом более высокими физикотехническими свойствами.

Выявлены оптимальные составы стекол, пригодных для получения микрошариков дорожно-сигнальных знаков и катафот, а также декоративных изделий. Малокомпонентность, дешевизна, низкая температура варки и переработки позволит широко использовать предлагаемые материалы в строительстве и для производства дорожных знаков.

Выявлены структурные особенности полученных стекол и изучен фазовый состав синтезированных ситаллов методами термографии, электронной микроскопии, инфракрасной спектроскопии и рентгенографии. Предложена структурная интерпретация полученных результатов, что позволит учитывать это при разработке новых конструкционных материалов.

Практическая значимость результатов исследования. Учитывая то, что варка стекла остаётся энергоёмким процессом, протекающим с большими энергозатратами, проведены работы по снижению температуры варки свинцовосиликатных стекол за счёт добавки B_2O_3 от 1 до 5 мас.%. При этом отмечено закономерное уменьшение температуры плавления шихты от 800 (содержание $B_2O_3 - 0$ мас.%) до 600^0 C, содержащих B_2O_3 в количестве 5 мас.%.

Также в работе изучено влияние различных добавок на процессы силикатообразования и стеклообразования. B_2O_3 введен в стекло в количестве (2 мас.%); оксиды натрия и бора (по 1 мас.%); оксиды бора, натрия и кальция (по 0,67 мас.%); оксиды бора, натрия, кальция и алюминия (по 0,5 мас.%). Снижение температуры на 100^0 (от 1100^0 C до 1000^0 C) и времени варки (от 1 часа до 30 мин.) отмечено при комплексном введении в состав стекла добавок B_2O_3 , Na_2O , CaO и Al_2O_3 .

Выработаны основы переплавки стеклогранулятов в микрошарики в лабораторных и промышленных условиях. Подсчитана экономическая эффективность при выпуске 100 т стекломассы для изготовления дорожносигнальных знаков и декоративных изделий для витражей и панно.

На основе проведенных исследований разработаны новые стёкла, особенно в тройной системе $PbO-R_2O_3-SiO_2$ (где $R-Ce^{3+}$, Nd^{3+} и Er^{3+}) с рядом ценных физико-химических свойств, представляющих интерес для приготовления ситаллизированных изделий строительно-технического назначения. Они были подвергнуты к испытанию в ИЯФ АН РУз по части надёжности к γ -облучению. Полученные предварительные результаты позволяют рекомендовать необходимости продолжения данных исследований с целю изготовления на их основе окошек ядерных реакторов, использовать их в качестве стойких деталей в видимой области прозрачности.

Предложены научно-обоснованные рекомендации для использования разработанных стекол в производстве стеклокристаллических материалов. Подобраны соответствующие приёмы и режимы термообработки, а также нуклеаторы кристаллизации, такие как Cr_2O_3 , TiO_2 , ZrO_2 и WO_3 .

Выполненные систематические исследования по изучению условий стеклообразования в двойной свинцовосиликатной системе и тройных системах, параметров их каталитической кристаллизации позволили получить и обобщить обширные данные, которые будут использованы при разработке новых стеклообразных материалов.

Реализация результатов. 1. Материалы по разработке состава и технологии получения стекол и ситаллов переданы для рассмотрения и использования:

- АК «Узавтодор» данные по светоотражающим стеклошарикам;
- производству «Бисер» при Янги-юльском экспериментальном ремонтно-механическом заводе технология изготовления микростеклошариков и катафот;
- производственному предприятию «Eurostyle» изготовление декоративных изделий;
- АО «Оникс» и ИЯФ АН РУз составы свинцовосиликатных стекол (для производства многосвинцовых декоративных и специальных изделий);
- АК «Узстройматериалы» составы свинцовосиликатных стекол и ситаллов;
- высшее образование в учебный процесс (методическое пособие, лекции, лабораторная работа с включением данных диссертационной работы).

- 2. Рекомендован состав стекла, содержащий 80 мас.% оксида свинца. Режим и возможность получения на его основе микростеклошариков внедрены на производственном предприятии «Олмазор ТМТЕИЧК» (г.Янгиюль Ташкентской области). На участке предварительной обработки сырьевых материалов завода сварено более 100 кг стекла с последующим переводом его в микростеклошарики. На основе полученных микростеклошариков диаметром от 60 до 90 мкм изготовлены светоотражающие дорожно-сигнальные знаки в количестве более 1000 штук. Экономическая эффективность в результате улучшения их качества составила по данным 2006 года в расчете на 1 кг стекла 13920 14400 сумов. В расчете на 1 т стекла это составит 681 814 тыс. сумов.
- 3. Производственное испытание дорожно-сигнальных знаков, изготовленных на основе свинцовосиликатных микростеклошариков произведены СМЭУ УБДД ГУВД г.Ташкента. Анализом их в процессе эксплуатации в течение 6 месяцев и более доказано, что отражательная способность изготовленных знаков отвечает установленным требованиям.
- 4. Оптимальные составы стекла для изготовления панно и витражей прошли производственное испытание на предприятии «Eurostyle». Предварительные расчёты показывают в результате улучшения качества окрашенных стёкол, в расчете на 1 m^2 стекла, экономический эффект составляет от 11750 до 12500 сумов.
- 5. Свинцовосиликатные стекла были переданы в лабораторию «Радиационные процессы в диэлектрических материалах» ИЯФ АН РУз с целью проверки их надёжности к у-облучению. Получены обнадёживающие данные по оптическому поглощению и по люминесцентным свойствам стёкол (фотолюминесценции).
- 6. По материалам диссертационной работы издано 1 методическое пособие. Основные результаты включены в лекционный курс и организована 1 лабораторная работа.

Апробация работы. Результаты работы докладывались Международных научно-практических конференциях «Инновация - 2000», «Инновация - 2001» и «Инновация - 2006», проведенные в г.г. Бухара и Ташкент; Республиканской научной конференции «Современные проблемы химической технологии», проведенной в г. Фергана, 1998 г.; Республиканской научно-технической конференции «Экологические проблемы промышленности и роль специалистов в их решении», проведенной в ТашГТУ, г. Ташкент, 2000 г.; II – ой Республиканской научно-технической конференции «Новые неорганические материалы», проведенной в ТашХТИ, г. Ташкент, 2000 г.; I -Республиканской научно-практической конференции, посвященной 70-летию акад. А.Г. Ганиева, проведенной в г. Термез, 2002 г.; Республиканской научнотехнической конференции «Актуальные проблемы химии и химической технологии», проведенной в ТашХТИ, 2002 г.; Республиканской научнотехнической конференции «Современные технологии переработки местного сырья и продуктов», проведенной в ТашХТИ, г.Ташкент, 2007 – 2008 г.г.; Республиканской научно-технической конференции с участием зарубежных ученых «Композиционные материалы: структура, свойства и применение»,

проведенной в г. Ташкент, 2008 г.; Республиканской научно-технической конференции «Теория и практика композиционных строительных материалов», проведенной в ТАСИ, г. Ташкент, 2008 г.; Международный научно-практической конференции «Актуальные проблемы обеспечения интеграции науки, образования и производства», проведенной в ТашГТУ, г. Ташкент, 2008г.; VII – Х и XVII – XVIII Научно-теоретических и технических конференциях профессорско-преподавательского состава, аспирантов, научных сотрудников и студентов Ташкентского химико-технологического института, г. Ташкент, 1998 – 2001 и 2008 – 2009 г.г.; Семинаре при Специализированном совете Д.067.24.01 при Ташкентском химико-технологическом институте, г.Ташкент, 2009 г.

Опубликованность результатов. По материалом диссертационной работы опубликовано 28 научных работ, в том числе 18 статей и 10 тезисов докладов на международных и республиканских научных конференциях.

Структура и объем диссертации. Диссертационная работа состоит из введения, 6 глав, общих выводов, списка использованной литературы из 201 наименования отечественной и зарубежной литературы и приложений. Содержание работы изложено на 155 страницах компьютерного текста, содержит 29 рисунков и 26 таблиц.

Автор выражает благодарность к.т.н. Шарипову Д. за научные консультации и ценные советы при выполнении отдельных частей работы.

OCHOBHOE СОДЕРЖАНИЕ РАБОТЫ Синтез и исследование стекол в системе PbO - SiO₂

В связи с отсутствием достоверных данных по процессу стеклообразования и с целью уточнения их в данной работе проведены исследования по получению легкоплавких стекол в системе PbO - SiO_2 в интервале $700\text{-}1100^0C$ (табл. 1).

Таблица 1 Некоторые свойства стекол в системе PbO - SiO₂

Поряд-	Плотность,		Показатель		Средний коэффициент	
ковый		d	преломления,		термического	
номер				i_D		ирения,
стекол				,	а•10 ⁻⁷ •гра∂ ⁻¹	
	расчёт-	экспери-	расчёт-	экспери-	расчёт-	экспери-
	ная	менталь-	ная	менталь-	ная	менталь-
		ная		ная		ная
2*	7,47	7,87	2,19	2,36	103,12	103,49
3	5,96	6,17	1,93	2,07	85,70	85,91
4	4,96	5,29	1,78	1,97	73,49	73,88
5	4,25	4,51	1,69	1,90	64,46	64,90
6	3,71	4,10	1,62	1,86	57,51	57,92

*Содержание SiO₂ в мас.% - 10, 20, 30, 40 и 50.

Экспериментально полученные результаты физико-химических свойств синтезированных стёкол для системы PbO - SiO₂ находятся в следующих пределах: показатель преломления n_D от 1,86 до 2,36, плотность от 4,10 до 7,87 г/см³, КТР от 20 до 300°C α х 10⁻⁷ град. от 58 до 103, температура начала размягчения от 380 до 420°C, химическая устойчивость (потеря веса) 0,1 – 0,45%. Свойства стёкол, синтезированных в системе PbO - B₂O₃ показали следующие результаты: показатель преломления n_D от 1,75 до 1,83: плотность от 4,3 до 6,7 г/см³, КТР от 20 до 300°C α х 10⁻⁷ град. от 61 до 71, температура начала размягчения от 375 до 410°C. Химическая устойчивость (потеря массы в воде) – 1,68 – 5,12%.

Таким образом, показана возможность получения стеклошариков на основе систем PbO - SiO_2 и PbO - SiO_2 с добавками, которые обеспечивают высокие значения показателя преломления и низкую температуру варки.

Кроме вышеописанного, определена возможность введения до 30% стеклоотходов в состав шихты соответственно за счёт свинцового глёта, кварцевого песка и поташа. Опыты проведены в сторону изменения соотношения 80% PbO и 20% SiO₂. С целью снижения температуры варки стёкол возможно введение в состав шихты до 5% B₂O₃. B₂O₃ вводится в состав шихты в виде H_3BO_3 .

Синтез и исследование свинцовосиликатных стекол с добавками – плавнями

В дальнейшем, с целью снижения температуры варки в шихту стекла состава (PbO-80%, SiO_2 -20%) добавлен оксид бора B_2O_3 в количестве 1, 2, 3, 4 и 5 мас.%. Количество оксида бора добавлялось в таком соотношении, чтобы основные показатели стекла — цвет, прозрачность, показатель преломления не изменялись.

В составах с содержанием оксида бора температура плавления шихты снизилась от 780 до 600^{0} С и максимальная температура варки соответствовала: 1100, 1050, 1000 и 950^{0} С по мере увеличения количества оксида бора.

В результате проведенных экспериментов с использованием малых количеств добавок удалось синтезировать стекла с низкой температурой варки. При этом сохранены цвет, прозрачность и по возможности основной показатель – коэффициент светопреломления (табл. 2).

Таблица 2 Физико-технические показатели стекол, содержащих B₂O₃

$N_{\underline{0}}$	Коли-	Темпера-	Темпера-	Продолжи-		Показатель	Окраска
п.п.	че-	тура	тура	тельность	10 ⁻⁷ •град ⁻¹	прелом-	образца
	ство,	плавле-	варки	выдержки		ления,	
	B_2O_3	кин	стекла,	при данной		n_{D}	
		шихты,	^{0}C	температуре,			
		^{0}C		мин.			
3	0	800	1000	60	77	1,85	Желто-
							ватый

Продолжение табл. 2

						1 ' '	
7	0,5	780	980	60	70	1,84	Желто-
							ватый
8	1	760	960	50	61	1,83	Темно-
							желтый
9	1,5	740	940	50	62	1,82	Темно-
							желтый
10	2	720	920	40	63	1,81	Темно-
							желтый
11	3	680	880	30	65	1,79	Светло-
							желтый
12	4	640	840	20	69	1,77	Светло-
							желтый
13	5	600	800	10	71	1,75	Бледно-
							желтый

Из табл.2 видно, что по мере увеличения количества B_2O_3 при постоянных значениях PbO и SiO_2 уменьшается температура плавления, процессы плавления ускоряются. Таким образом, температура плавления стекол системы PbO - SiO_2 зависит от соотношения компонентов данной системы.

Структура синтезированных стекол изучена ИК - спектроскопическим методом.

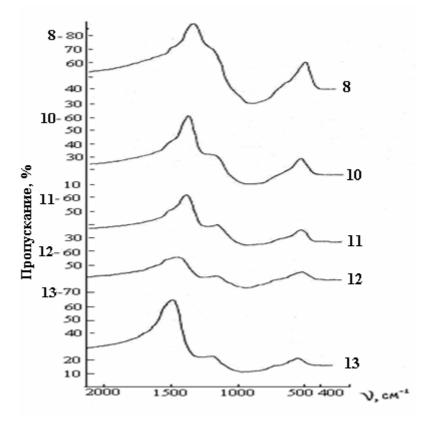


Рис.1. ИК спектры поглощения стекол системы PbO - SiO_2 с добавками B_2O_3 : 8) B_2O_3 -1%; 10) B_2O_3 -2%; 11) B_2O_3 -3%; 12) B_2O_3 -4%; 13) B_2O_3 -5%.

Полученные результаты приведены в табл.3, а спектры на рис.1 свидетельствуют о наличии структурных группировок $[SiO_4]$, $[BO_4]$ и $[BO_3]$. В области температур $850-1050^0\mathrm{C}$ отмечается увеличение степени полимеризации структурных группировок изучаемых стекол. При содержании в составе стекла 20-30% SiO_2 в результате термообработки при кристаллизации в структуре стекол аморфная фаза переходит в кристаллическую и структура приобретает ближний порядок тетраэдров $[SiO_4]$ и $[BO_4]$.

Возрастание интенсивности максимальной полосы поглощения при $1400 \, \, \text{см}^{-1}$ связано с заменой $[SiO_4]$ группой $[BO_3]$ при увеличении количества вводимой борной кислоты. При этом наблюдается увеличение интенсивности полос поглощения.

Таблица 3 Спектры поглощения некоторых синтезированных стекол

$N_{\underline{0}}$	Состав стекла, мас.%	Спектры поглощения стекла, см -1					
П.п.							
7	$80 \text{ PbO} + 20 \text{ SiO}_2 + 0,5 \text{ B}_2\text{O}_3$	1775 1650 1425 1275 875 775 650 450					
8	80 РЬО $+ 20 SiO_2 + 1,0 B_2O_3$	1800 1675 1450 1300 900 800 675 475					
9	80 РЬО $+ 20 SiO_2 + 1,5 B_2O_3$	1825 1700 1475 1325 925 825 700 500					
10	80 РЬО $+ 20 SiO_2 + 2,0 B_2O_3$	1850 1725 1500 1350 950 850 725 525					

В данной части работы приведены теоретически спланированные составы для снижения температуры варки стекла. Для экспериментального подтверждения в качестве добавок в стекла методом расчета определены и введены добавки Na_2O , CaO, B_2O_3 и Al_2O_3 .

В результате проведенных исследований установлено, что введение в стекла добавок — оксидов элементов 1-3 группы даёт возможность снизить температуру варки стекол от 25 до 100^{0} С, особенно, если в качестве добавки использован оксид бора температура варки снижается на 50 до 200^{0} С и при этом получаются качественные стёкла.

Образцы синтезированных стекол исследованы на электронном микроскопе ЭМВ - 100 БР с разрешающей способностью 20Å и ускоряющим напряжением 50кB. Использован метод самооттененной одноступенчатой угольно-серебряной реплики.

Во всех исследуемых образцах зафиксировано возникновение самостоятельных областей, отличающихся структурными особенностями в зависимости от вида вводимых в шихту добавок и продолжительности времени варки стекла.

Таким образом, разработаны составы стёкол для получения качественных стеклошариков для дорожно-сигнальных знаков. Свойства данных стеклошариков отвечают требованиям ГОСТ 10354-82 на данный вид изделий. Температура варки стёкол для выработки микростеклошариков находится в пределах $1000 - 1100^{0}$ С. На основе проведенных исследований из 11 синтезированных и изученных составов выбраны два состава как оптимальные: состав №3 PbO 80% + SiO₂ 20% и состав №4 PbO 70% + SiO₂ 30%. Изучены физические и химические свойства стёкол данных составов в лабораторных

Синтез цветных стекол

В настоящее время получение стекол с различной окраской представляет большой интерес с точки зрения использования их в различных отраслях экономики, таких как производство дорожно-сигнальных знаков, люминесцирующих порошков, фильтров, декоративных изделий и др.

В связи с вышеизложенным в данной части работы излагаются результаты по синтезу окрашенных стёкол, полученных в системе PbO - SiO_2 с добавками – красителями Cr_2O_3 , Mn_2O_3 , Fe_2O_3 , Ni_2O_3 , Y_2O_3 , Ce_2O_3 , Nd_2O_3 и Er_2O_3 (табл. 4).

Таблица 4

	некоторые своиства окрашенных стекол							
Номер	Хими	ический с	остав	Потери	Темпе-	Пока-	Окраска	
стекла	сте	екла в мас	.%	при	ратура	затель		
	PbO	R_2O_3	SiO_2	варке,	варки,	прелом-		
				%	^{0}C	ления,		
						n_{D}		
22	77,72	1,36	20,92	1,76	1100	1,915	Темно-	
		Cr_2O_3					зелёный	
23	77,68	1,41	20,91	1,90	1100	1,913	Фиолето-	
		Mn_2O_3					вый	
24	77,67	1,42	20,91	1,76	1100	1,913	Темно-	
		Fe_2O_3					коричневый	
25	77,63	1,47	20,90	1,76	1100	1,911	Зелёный	
		Ni_2O_3						
26	78,00	1,00	21,00	1,75	1100	1,922	Слабо-	
		Y_2O_3					желтый	
27	77,65	1,45	20,90	1,84	1100	1,920	Желтый	
		Ce_2O_3						
28	77,62	1,48	20,90	1,76	1100	1,919	Сиреневый	
		Nd_2O_3						
29	77,47	1,68	20,85	1,76	1100	1,918	Розовый	
		Er_2O_3						

В работе разработку цветных стекол на основе системы PbO - SiO_2 проводили в двух направлениях. Сварено и изучено две серии стекол.

В первой серии в качестве красителей использованы оксиды переходных элементов — хрома, марганца, железа и никеля. Они придают стеклу свойственную им окраску.

Во второй серии — использованы оксиды редкоземельных элементов — Y_2O_3 , Ce_2O_3 , Nd_2O_3 и Er_2O_3 . В какой-то мере их использование в качестве компонента стекла является желательным.

Для приготовления исходных смесей использованы известные методики приготовления стекольных шихт и реактивные материалы марки «ч.д.а» и «х.ч». Перемешивание материалов производили мокрым способом с использованием этилового спирта. Варка стекол осуществлена в электрической печи сопротивления с силитовыми нагревателями. Максимальная температура варки стекол $1050-1100^{0}$ С. Выдержка при конечной температуре составила 1 час.

Структурные особенности синтезированных цветных стекол исследованы методом инфракрасной спектроскопии, который позволяет обнаружить колебания анионов кремний – кислород, свинец – кислород, включая колебания цепей, слоёв и каркасов тетраэдра [SiO₄].

Отмечено, что в изучаемых стёклах по мере уменьшения степени конденсации тетраэдров от каркасных к ортоструктурам имеет место тенденция к росту частот в интервале 500-700 см⁻¹.

На спектрах поглощения стекол (рис.2), содержащих оксиды хрома, марганца, железа и никеля наблюдается широкая размытая полоса поглощения в области 900-1100 см⁻¹ с глубоким максимумом при 920-980 см⁻¹ и более слабыми максимумами при 600-800 см⁻¹. Полоса в области 900-1000 см⁻¹ является частотой валентного колебания Si-O-Si в трехмерной сетке.

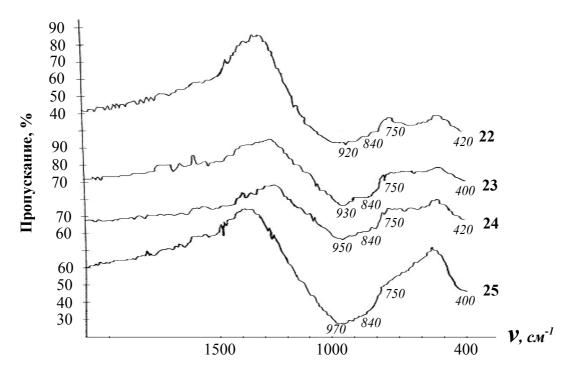


Рис.2. Инфракрасные полосы поглощения изученных бесщелочных стекол, содержащих: $22 - c \, \text{Cr}_2\text{O}_3$, $23 - c \, \text{Mn}_2\text{O}_3$, $24 - c \, \text{Fe}_2\text{O}_3$ и $25 - c \, \text{Ni}_2\text{O}_3$.

Известно, что чёткая полоса поглощения в области 1060-1120 см⁻¹ характерна для чистого кварцевого стекла. Присутствие её позволяет предположить наличие областей с практически ненарушенными связями Si-O-Si, т.е. тетраэдров с высокой степенью полимеризации или трехмерных комплексов типа $(SiO_{4/2})_n$, почти лишённых избыточных зарядов.

В синтезированных стёклах присутствие атомов свинца играет роль катионов деполимеризаторов связей Si-O-Si. Их частота и интенсивность при переходах несколько изменяется в зависимости от типа и природы крупного катиона, а также в зависимости от наличия атомов железа, никеля, хрома и марганца.

Сравнение полученных спектроскопических данных с ранее проведёнными исследованиями свинецсодержащих стекол показывает, что в сетках рассмотренных стёкол ионы бора и алюминия входят в анионный каркас и замещают атомы кремния в тетраэдрических позициях. Роль катионов играет только ион свинца. Также, из-за наложения основных полос поглощения с полосами кремния трудно сделать заключение о роли атомов железа, никеля, хрома и марганца. Малая диффузность полос особенно в области 600-700 см⁻¹ указывает на наличие упорядоченных областей в стеклах на основе Mn-O, Cr-O, Ni-O и Fe-O (рис.2).

Полученные стёкла внешне выгладят прозрачными и окрашенными. Получением спектров поглощения при прохождении пучка лучей через тонкий слой стекла показано влияние кремнекислородных комплексов на диапазон инфракрасных полос поглощения.

Изучение инфракрасных спектров поглощения стекол, содержащих оксиды церия, неодима и эрбия (рис.3) позволило сделать заключение о координации атомов редкоземельных элементов в сетке этих стекол.

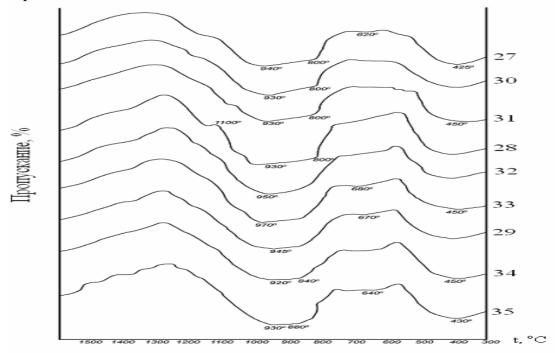


Рис.3. Инфракрасные спектры поглощения стекол составов: 27, 30, 31 — с содержанием оксида церия 1,45, 2,88 и 5,75 мас.%; 28, 32, 33 — с содержанием оксида неодима 1,48, 2,96 и 5,88 мас.%; 29, 34, 35 — с содержанием оксида эрбия 1,68, 3,35 и 6,64 мас.%

На основе анализа спектров поглощения изучаемых стекол можно сделать предположение, что оксиды редкоземельных элементов в матрице стекла

образуют разбавленный раствор, взаимодействующий своеобразно как в ближнем, так и в дальнем порядке с матрицей стекла.

Электронно-микроскопические исследования синтезированных цветных стекол показали, что основные изменения в структуре стекол касаются поверхности излома стекла. Стекло, содержащее Cr_2O_3 имеет крупночешуйчатую микроструктуру поверхности. Стекла гладкие с небольшими участками оплавленного кварца.

Стекла с содержанием Mn_2O_3 характеризуются тонко—чешуйчатым гладким строением. Придает стеклу гладкую микроструктуру с небольшими участками изоморфного кварца использование в качестве красителя Fe_2O_3 . Стекло с содержанием Ni_2O_3 однородное, гладкое с небольшими участками оплавленного кварца. Стекла, с содержанием в качестве красителей оксидов редкоземельных элементов, характеризуются аморфной структурой, изредко имеют участки с изоморфной микроструктурой кварца.

Разработка состава стеклокристаллических материалов

В данной части диссертационной работы на основе стекол системы PbO - TR_2O_3 - SiO_2 получены составы ситаллов с нуклеаторами кристаллизации. В качестве которых из гаммы нуклеаторов отобраны такие оксиды, как Cr_2O_3 , TiO_2 , ZrO_2 и WO_3 .

С целью определения кристаллизационной способности опытные стекла подвергнуты кристаллизации методом массовой кристаллизации. Кристаллизацию стекол проводили в электрической печи с силитовыми нагревателями. Для чего образцы стекол нагревали до $500-550^{0}\mathrm{C}$.

Использованный метод позволил провести кристаллизацию трёх образцов одновременно. Исследуемые образцы выдерживали при заданной температуре от 1 до 4-х часов.

Результаты наблюдения продуктов кристаллизации стёкол (визуально и под микроскопом в проходящем свете), оцененные по шестибольной шкале, приведены в таблице 5.

Таблица 5 Кристаллизационная способность опытных стёкол

	Representation and chocomocile of the circum							
Номер		Степень кристаллизации						
стекла			при темп	ературе				
	500	550	600	650	700	750		
27								
28								
29								

	- отсутст	гвие кристаллов,		- кристал.	лическая пл	пенка с	толщиной
0,1 мм	,	- кристаллическа	я плені	са с толщи	ной 0,5 мм,] - поверх-
ностна	я криста.	ллизация,	полная	кристалли	зация.		

Полученные в табл.5 данные свидетельствует об одинаковом характере кристаллизации церий-, неодим- и эрбийсодержащих стёкол. Во всех случаях признаки кристаллизации начинаются при $-575\pm25^{0}\mathrm{C}$, а полная кристаллизация наступает при $750^{0}\mathrm{C}$.

Кристаллизационная способность стёкол в свете полученных данных зависит от множества факторов. В числе основных нужно отметить химический состав стекла, вид и количество нуклеатора кристаллизации, температурный режим термообработки и другие. В конкретном случае для усиления процесса кристаллизации в составы шихт введен дополнительно нуклеатор кристаллизации — WO_3 в количестве от 1 до 9 мас.%.

В данной работе синтезированные стёкла кристаллизовались при различных температурных режимах, в режиме выдержки — один и четыре часа. Увеличение времени термообработки от одного часа до 4-х часов способствует кристаллизационному процессу (табл.5).

Практическая реализация полученных результатов

Разработанные оптимальные составы бор- и натрийсодержащих свинцовосиликатных микростеклошариков (табл.6) и технологические режимы их получения внедрены в промышленных условиях завода «Олмазор ТМТЕИЧК» (г.Янгиюль).

В цехе предварительной обработки сырьевых материалов сварены около 100 кг стекла оптимального состава, затем на участке изготовления изделий завода изготовлены более 1000 штук дорожно-сигнальных знаков, установленные в различных районах города Ташкента и Ташкентской области.

В процессе их эксплуатации в течение 6 месяцев, подтвержденным соответствующими актами со стороны ГАИ, установлено что отражательная способность изготовленных знаков отвечает соответствующим требованиям.

Таблица 6 Шихтовые составы бор- и натрийсолержащих стекол

	Состав 19	Состав 42			
Оксид свинца	80	70			
Оксид кремния	20	30			
Оксид бора	0,5 – 1,0 (сверх 100%)	0,5 – 1,0 (сверх 100%)			
Оксид натрия	0,5 – 1,0 (сверх 100%)	0,5 – 1,0 (сверх 100%)			

Полученные в производственных условиях стекла и микростеклошарики имели следующие физико-химические характеристики:

	Состав 19	Состав 42
Температура варки, °С	1000	1000
Продолжительность варки, ч	1	1
Показатель преломления, n_D	2,0	1,9
Плотность, $\Gamma/\text{см}^3$	6,0	5,9

Химическая устойчивость, %:		
по отношению к CH_3COOH ($pH = 4,3$)	97,8	97,5
по отношению к дистил. H_2O (pH = 7,0)	99,2	99,0
по отношению к NaOH (pH = 9,3)	97,5	97,2
Коэффициент термического		
расширения, $\alpha \times 10^{-7}$, град. ⁻¹ от 20 - 200 ⁰ C	83,2	82,4
от $20 - 400^{\circ}$ С	85,2	84,4
Диаметр шариков, мкм	60–90	60–90
Окраска	Светло- желтый	Светло- желтый

Экономический эффект от внедрения материала на Янгиюльском заводе при выпуске 1 т изделий составил 681 — 814 тыс. сумов. Варка 100 т стекла и переработка его в соответствующие знаки даст экономию до 100 млн. сумов.

По результатам проведённых исследований в полупромышленных условиях ТХТИ (варка стекла в количестве 10 кг) и производственного предприятия «EUROSTYLE» получена опытная партия витражей.

Разработку цветных стекол для витражей проводили использованием оксидов хрома, марганца, железа и никеля.

Для приготовления исходных смесей использованы как реактивные материалы марки «ч.д.а» и «х.ч», так и некоторые природные материалы, в частности пески Джеройского месторождения и кварцсодержащие отходы АКТ-10 СП «Каолин». Перемешивание материалов производили мокрым способом с использованием этилового спирта. Варка стекол осуществлена в электрической печи сопротивления с силитовыми нагревателями. Максимальная температура варки стёкол 1050-1100⁰С. Выдержка при конечной температуре составила не менее 1 час.

Стёкла варились многократко в корундизовых тиглях емкостю 250-300 мл при температуре $1000-1100^{0}$ С.

Получены окрашенные стёкла со следующими усредненными физико-химическими характеристиками:

Показатель преломления		1,91
Плотность, г/см ³		5,96
Химическая устойчивость, %:		
по отношению к CH_3COOH ($pH = 4,3$)		97,55
по отношению к дистил. H_2O (pH = 7,0).		99,20
по отношению к NaOH (pH = 9,3)	• • • • • • • • • • • • • • • • • • • •	97,25
Коэффициент термического расширения		
	от 20 - 200°C	84,20
	$0.0720 - 400^{\circ}$ C	86 20

На основе полученных цветных стёкол на производственном предприятии «EUROSTYLE» изготовлены витражи и декор стёкла.

Свинцово-силикатные стекла, полученные с добавками Y_2O_3 , Ce_2O_3 , Nd_2O_3 и Er_2O_3 , переданы сотрудникам ИЯФ АН РУ3 с целью предварительной проверки их надёжности к γ -облучению.

Переданные образцы в виде штабиков с длиной 10 мм и ширинной 10 мм (или диаметром 10 мм) изучены на радиационную стойкость следующими методами:

- 1) Оптическое поглощение;
- 2) Люминесцентные свойства (фотолюминесценция).

После γ -облучения от источника 60 Со в течение 2 часов вновь определены вышеперечисленные оптические свойства.

Предварительно полученные результаты свидетельствуют о стойкости синтезированных материалов к у-излучению. Необходимо дальнейшее исследования в этом направлении с целью определения возможности их использования в качестве окошек ядерных реакторов, в качестве стойкого материала в видимой области прозрачности.

ЗАКЛЮЧЕНИЕ

- 1. Анализ обзора литературы и изучение состояния вопроса в области получения легкоплавких стёкол с высоким показателем преломления показали технико-экономическую целесообразность разработки новых составов стёкол и ситаллов с низкой температурой варки на основе двухкомпонентной системы PbO-SiO₂. Получены данные о плотности, показателя преломления, коэффициента термического расширения. Показана их зависимость от химического состава.
- 2. Выявлено, что в составах шихт 80% PbO + 20% SiO₂ и 70% PbO + 30% SiO₂ мас.% по данным термографического анализа последовательно происходят сложные фазовые превращения с вполне определенными тенденциями, главная из которых заключается в кристаллизации при 468° C 2PbO·SiO₂ и при 600° C PbO·SiO₂ при содержании 20% кремнезема и при 700° C PbO·SiO₂ при содержании 30% SiO₂. Эти основные кристаллические фазы, впоследствии под влиянием образующиеся с участием SiO₂ сложных эвтектик, переходит в расплав. Таким образом, подтверждено, что силикатообразование для состава 80% PbO + 20% SiO₂ протекает через образование промежуточных фаз 2PbO·SiO₂ и PbO·SiO₂, для состава 70% PbO + 30% SiO₂ в качестве промежуточной фазы образуется только PbO·SiO₂.
- 3. Установлено, что введение в составы 80% PbO + 20% SiO₂ и 70% PbO + 30% SiO₂ мас.% добавки B_2O_3 в количестве 1, 2, 3, 4 и 5 мас.% при регулируемом изменении основных показателей окраски, прозрачности, показателя преломления благоприятно влияет на температуру плавления и продолжительность варки стекла. ИК спектры свидетельствуют о наличии в синтезированных стеклах, в основном структурных группировок [SiO₄], [BO₄] и [BO₃], характерных для силикатных систем со связами Si O и Si O Si.
- 4. Изучение многосвинцовых стекол на основе системы PbO SiO_2 с добавками B_2O_3 , $B_2O_3+Na_2O$, $B_2O_3+Na_2O+CaO$ и $B_2O_3+Na_2O+CaO+Al_2O_3$

выявило увеличение гомогенизирующего действия добавок при использовании одной добавки B_2O_3 и смеси добавок B_2O_3 , Na_2O_3 , CaO и Al_2O_3 . Причём, по данным электронной микроскопии во всех исследованных зафиксировано возникновение самостоятельных областей, отличающихся структурными особенностями в зависимости от вида вводимых в стекло добавок и продолжительности варки стекла. Электронно-микроскопические снимки образцов после 6, 12 и 24 часовой выдержки подтверждают наличие однородной структуры исследованных стекол. ИК - спектроскопическое изучение синтезированных стекол, с одной стороны, подтвердило наличие в них типичных для спектров стеклообразных веществ трех областей поглощения - 800-1300, 600-800 и 400-600 см⁻¹, с другой стороны, выявило воздействие оксидов бора, натрия, кальция и алюминия на контур поглощения стекла.

- 5. На основании полученных данных о взаимосвязи состава и физико-химических свойств подтверждена целесообразность разработки составов окрашенных бесщелочных стекол. На основе системы PbO SiO_2 с добавками Cr_2O_3 , Mn_2O_3 , Fe_2O_3 , Ni_2O_3 , Y_2O_3 , Ce_2O_3 , Nd_2O_3 и Er_2O_3 получены стёкла, устойчивые к кристаллизации и достаточно химически стойкие, имеющие высокие показатели преломления.
- 6. В результате изучения влияния добавок Y_2O_3 , Ce_2O_3 , Nd_2O_3 и Er_2O_3 на технологические и кристаллизационные свойства стекол, а также на прочность и линейный коэффициент термического расширения продуктов кристаллизации разработаны которые обладая удовлетворительными составы, технологическими свойствами при минимальном содержании редкоземельных элементов (1,00 – 1,68 мас.%) способны в результате направленной термообработки к образованию ситаллов с регулируемым коэффициентам термического расширения.
- 7. На основании комплексного изучения свойств и структурных особенностей продуктов кристаллизации ряда стекол разработаны оптимальные режимы ситаллизации, реализация которых позволила получить самоглазурующиеся, со специфическим блеском и окраской ситаллы с высокими коэффициентами преломления.
- 8. В производственных условиях получены стёкла оптимальных составов производства микростеклошариков. Ha ДЛЯ основе полученных микростеклошариков изготовлены светоотражающие дорожно-сигнальные знаки. В процессе эксплуатации их в течение 6 месяцев установлено, что отражательная способность изготовленных знаков отвечает требованиям ГОСТ 10354-82. Выработаны режимы переплавки стеклогранулятов в микрошарики в промышленных условиях. Подсчитана экономическая эффективность при выпуске 100 т стекломассы для изготовления дорожно-сигнальных знаков. Выявлена их пригодность для использования в качестве окрашенных стёкол при изготовлении витражей и декоративных панно.
- 9. Полученные стекла и ситаллы прошли предварительное испытания в ИЯФ АН РУз по части надёжности к γ-облучению. Полученные результаты рекомендует проведение дальнейших исследований в этом направлении с целью определения областей их практического применения.

- 10. Экономический эффект от использования оксидов PbO и SiO_2 с добавками оксидов бора и натрия в результате улучшения качества микростеклошариков составил в расчёте на $1\ \mathrm{Kr}$ стекла $13920\ -\ 14400$ сумов по данным $2006\ \mathrm{годa}$. В расчете на $1\ \mathrm{T}$ экономический эффект составляет $681\ -\ 814$ тыс. сумов.
- 11. Экономический эффект от использования оксидов редкоземельных элементов в системе PbO SiO_2 в результате улучшения качества цветных стекол по предварительным данным составил в расчете на 1 м² стекла 11750 12500 сумов по данным 2008 года.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

- 1. Исматов А.А., Исматов К.Ю., Адинаев Х.А. Получение, свойства и применение стёкол на основе системы $PbO-SiO_2$ // Узбекский химический журнал. -2000. -№1. -C. 8-10.
- 2. Исматов К.Ю., Адинаев Х.А. Получение и свойства крайних фаз системы PbO-SiO₂. // Тошкент кимё-технология институти профессорўкитувчилари, аспирантлари, илмий ходимларининг илмий-назарий ва техникавий конференциясининг баёнлари. – Тошкент: ТКТИ, 1998. – 46 б.
- 3. Адинаев Х.А., Исматов К.Ю. PbO-SiO₂ системали шишани ўрганиш // Материалы республиканской конференции «Современные проблемы химической технологии». Фергана: ФерПИ, 1998. С. 28.
- 4. Адинаев Х.А., Исматов К.Ю., Исматов А.А. Дорожно-сигнальные знаки на основе стекол системы $PbO-SiO_2$. // Тошкент кимё-технология институти профессор-ўкитувчилари, аспирантлари, илмий ходимларининг илмий-назарий ва техникавий анжумани баёнлари. Тошкент: ТКТИ, 1999.—9 б.
- 5. Адинаев Х.А., Исматов К.Ю., Исматов А.А. Получение, свойства и применение стекол на основе $PbO-SiO_2$ и $PbO-B_2O_3$. // Тошкент кимётехнология институти профессор-ўкитувчилари, аспирантлари, илмий ходимларининг илмий-назарий ва техникавий анжумани баёнлари. Тошкент: ТКТИ, 1999. $10\,$ б.
- 6. Адинаев Х.А., Исматов А.А. Қўрғошин оксиди кремнезём системаси таркибидаги шишалар асосида йўл-товуш белгилари олиш. // Тошкент кимё-технология институти талабаларининг илмий-назарий ва техникавий анжумани баёнлари. Тошкент: ТКТИ, 1999. 36 б.
- 7. Адинаев Х.А., Исматов К.Ю., Исматов А.А. $PbO-SiO_2$ системаси асосидаги шихталарга B_2O_3 қушиш натижасида эрувчанликни пасайтиришга эришиш // Новые неорганические материалы II: доклады участников научнотехнической конференции. Тошкент:ТХТИ, 2000. C. 7-9.
- 8. Адинаев Х.А., Исматов К.Ю., Исматов А.А. $PbO-SiO_2$ системаси асосидаги шихталарга Na_2CO_3 қушиш натижалари // Тошкент кимё-технология институти профессор-укитувчилари, аспирантлари, илмий ходимларининг илмий-назарий ва техникавий анжумани баёнлари. Тошкент:ТКТИ, 2000.—3 б.
- 9. Адинаев Х.А., Исматов А.А. $PbO-SiO_2$ системаси асосидаги шихталарга H_3BO_3 ва Na_2CO_3 ларни комплекс кушиш натижалари // Тошкент

- кимё-технология институти талабаларининг илмий-назарий ва техникавий анжумани баёнлари. Тошкент: ТКТИ, 2000. 84 б.
- 10. Адинаев Х.А., Исматов К.Ю., Исматов А.А. PbO-SiO₂ системаси асосидаги микрошишашарикларнинг чикиндиларини шихталарга кайта кушиш оркали махсулотлар олиш // «Саноатда экологик муаммолар ва уларни хал этишда мутахассислар тайёрлашнинг роли» Республика илмий-техникавий анжуман тезислари. Тошкент: ТДТУ, 2000. 10-11 бетлар.
- 11. Адинаев Х.А., Исматов К.Ю., Исматов А.А. Микрошишашариклар олиш технологияси чикиндиларидан самарали фойдаланиш // «Инновация-2000» Халқаро илмий-амалий анжумани илмий мақолалар тўплами. Бухоро: БухДУ, 2000. 321-322 бетлар.
- 12. Адинаев Х.А., Исматов К.Ю., Исматов А.А. Саноат корхоналари шароитида $PbO-SiO_2$ системаси асосидаги йўл-сигнал белгиларини ишлаб чикиш // Тошкент кимё-технология институти профессор-ўкитувчилари, аспирантлари, илмий ходимларининг илмий-назарий ва техникавий анжумани баёнлари. Тошкент: ТКТИ, 2001.-5 б.
- 13. Адинаев Х.А., Исматов К.Ю., Исматов А.А. PbO-SiO $_2$ системаси асосида паст хароратда пишувчи шишалар олиш // «Инновация-2001» Халқаро илмий-амалий анжумани илмий мақолалар тўплами. Тошкент: ТДТУ, 2001. 283-285 бетлар.
- 14. Адинаев Х.А., Исматов К.Ю., Исматов А.А. Микрошариклар ишлаб чиқарувчи қурилмада олинган заррачаларни фракцияларга ажратиш // І-Республиканская научно-практическая конференция, посвященная 70-летию академика А.Г. Ганиева. Термез: ТерГУ, 2002. С. 170.
- 15. Исматов А.А., Адинаев Х.А. Паст хароратда пишувчи шишалар олишнинг баъзибир назарий ва амалий масалалари // "Кимё ва кимёвий технологиянинг долзарб муаммолари" Республика илмий-техника анжуманининг асарлари тўплами. Тошкент: ТКТИ, 2002. 211-214 бетлар.
- 16. Исматов А.А., Адинаев Х.А. Рациональное использование минерально-сырьевых ресурсов в производстве стекол и ситаллов // Международная научно-практическая конференция «Инновация-2006»: сборник научных статей. Ташкент: ТГТУ, 2006. С. 108-109.
- 17. Адинаев Х.А., Исматов А.А., Шарипов Ж.Ш. Изучение структурных особенностей легкоплавких свинецсодержащих стекол // Сборник трудов Республиканской научно-технической конференции «Современные технологии переработки местного сырья и продуктов, Том I». Ташкент: ТХТИ, 2006. С. 141-142.
- 18. Исматов А.А., Адинаев Х.А. Қўрғошинли сурик кремнезем системаси асосидаги шихталарни дифференциал термик тахлили // "Умидли кимёгарлар 2008" илмий техник анжумани мақолалари тўплами, ІІ-том. Тошкент: ТКТИ, 2008. 82-84 бетлар.
- 19. Адинаев Х.А., Исматов А.А., Шарипов Д. Электронно-микроскопические исследования стекол в системе PbO-SiO₂ // Международная научно-практическая конференция «Актуальные проблемы обеспечения

- интеграции науки, образования и производства»: сборник научных статей. Ташкент: ТГТУ, 2008. С. 159-161.
- 20. Исматов А.А., Адинаев Х.А. Структурные особенности и свойства свинцовосиликатных композиций // Материалы республиканской научнотехнической конференции с участием зарубежных ученых «Композиционные материалы: структура, свойства и применение». Ташкент: ГУП «Фан ва тараккиёт», 2008. С. 199-201.
- 21. Исматов А.А., Адинаев Х.А., Шарипов Д. Синтез и исследование стекольных композиций в системе PbO-SiO₂ // Республиканская научнотехническая конференция «Теория и практика композиционных строительных материалов»: сборник научных статей. Ташкент: ТАСИ, 2008. С. 200-203.
- 22. Адинаев Х.А. Термографическое и электронно-микроскопическое изучение свинцовосиликатных стекол // Узбекский химический журнал. Ташкент, $2008. N_{2}6. C. 26-30.$
- 23. Адинаев Х.А., Исматов А.А. Термографические и ИКспектроскопические исследования стекол для микрошариков с использованием оксидов редкоземельных металлов // Композиционные материалы. Ташкент, 2008. N 2. C. 17-20.
- 24. Исматов А.А., Адинаев Х.А., Шарипов Д. Синтез и электронно-микроскопическое исследование эрбийсодержащих свинцовосиликатных стекол // Сборник трудов республиканской научно-технической конференции «Технологии переработки местного сырья и продуктов». Ташкент: ТХТИ, 2008. С. 216-219.
- 25. Адинаев Х.А., Исматов А.А. Получение микростеклошариков светоотражающих дорожно-сигнальны знаков // «Актуальные вопросы в области технических и социально-экономических наук»: Республиканский межвузовский сборник. Ташкент: ТХТИ, 2009. С. 140-141.
- 26. Адинаев Х.А. Синтез и электронно-микроскопическое исследование церийсодержащих свинцовосиликатных стекол. // "Умидли кимёгарлар 2009" Труды научно-технической конференции молодых ученых: докторантов, аспирантов, научных сотрудников и студентов бакалавриата и магистратуры, І-том. Ташкент: ТХТИ, 2009. С. 108-109.
- 27. Адинаев Х.А., Исматов А.А. Синтез свинцовосиликатных стекол, окрашенных оксидами редких и редкоземельных элементов // Kimyo va кimyo texnologiyasi. 2009. №3, С. 22-24.
- 28. Исматов А.А., Адинаев Х.А., Худойберганова С.М., Шарипов Д., Ибрагимов Ш.Т. Особенности варки цветных стекол для декоративных композиций // «Маҳаллий хом ашёлар ва маҳсулотларни қайта ишлашнинг технологиялари» Республика илмий-техника анжуманининг маҳолалар тўплами. Тошкент: ТКТИ, 2009. С. 198-199.

РЕЗЮМЕ

диссертации Адинаева Хидира Абдуллаевича на тему: «Разработка составов и технологии получения свинецсодержащих стекол и ситаллов» на соискание ученой степени кандидата технических наук по специальности 05.17.11 — Технология силикатных и тугоплавких неметаллических материалов

Ключевые слова: свинцовый сурик, глёт, кварцевый песок, техническая сода, оксид бора, глиноземсодержащий отход, шихта, химический состав, фазовый состав, стекло, ситалл, дорожные знаки, витраж, у-облучение.

Объекты исследования: свинцовосиликатные стекла, окрашенные стекла с использованием редких и редкоземельные элементов, стеклокристаллические материалы, микрошарики, дорожно-сигнальные знаки, катафоты, художественные детали, стекло и ситаллы до- и после у-облучения.

Цель работы: разработка составов стёкол на основе системы $PbO-SiO_2$, определение физико-химических свойств экспериментальным и расчётным путями, исследование возможности получения окрашенных стёкол и ситаллов, определение областей их использования.

Методы исследования: химический, оптический, рентгенографический, электронно-микроскопический, термографический, ИК спектроскопический, стандартные методы определения физико-химических свойств и др.

Полученные результаты и их новизна: Впервые в системе PbO-SiO₂ два состава (70% PbO + 30% SiO₂ и 80% PbO + 20% SiO₂) определены как оптимальные с точки зрения получения на их основе стеклошариков, катафот, художественных деталей, γ -устойчивых материалов.

Впервые экспериментально подтверждено, что силикатообразование в шихтах 80% PbO + 20% SiO₂ протекает через образование промежуточных фаз – 2PbO·SiO₂ и PbO·SiO₂; в шихтах 70% PbO + 30% SiO₂ в качестве промежуточной фазы выступает только PbO·SiO₂.

Впервые для бинарных свинцовосиликатных стекол рассмотрен весь технологический цикл перехода стекла в микростеклошарики и затем в дорожно-сигнальные знаки.

Получены цветные стекла с применением Cr_2O_3 , Mn_2O_3 , Fe_2O_3 и Ni_2O_3 и определена их пригодность для изготовления витражей, панно и др.

Синтезированы стекла с рядом редкоземельных элементов и изучена возможность их превращения в ситаллы. Рассмотрена возможность использования полученных материалов в качестве стёкол, устойчивых к уоблучению. Указана необходимость проведения дальнейших исследований в этом направлении.

Уточнён механизм образования $PbO \cdot SiO_2$ как фазы при низкотемпературной ситаллизации рассматриваемых стёкол в зависимости от условий термообработки и кристаллизации.

Практическая значимость: доказана возможность производства на песков Джерой-и основе свинцового сурика и природных кварцевых Тозбулакского месторождений прозрачных стёкол, пригодных изготовления дорожно-сигнальных знаков. Разработанные эффективные

окрашенные стёкла имеют актуальность для создания импортозамещающего производства декорированных изделий — витражей, панно и др. Стёкла и ситаллы по предварительным данным пригодны для создания устойчивых к уоблучению материалов.

Степень внедрения и экономическая эффективность: разработанные оптимальные составы стёкол и ситаллов апробированы в условиях «Олмазор ТМТЕИЧК» и производственного предприятия «EUROSTYLE».

Экономический эффект от использования оксидов PbO, SiO_2 с добавками оксидов бора и натрия в результате улучшения качества микростеклошариков составил в расчёте на 1 кг стекла 13920 - 14400 сумов по данным 2006 года.

Экономический эффект от использования оксидов редкоземельных элементов в системе $PbO-SiO_2$ в результате улучшения качества цветных стекол составил в расчете на 1 M^2 стекла 11750 - 12500 сумов по данным 2008 года.

В процессе эксплуатации в течение 6 месяцев установлено, что отражательная способность изготовленных знаков отвечают установленным требованиям.

Область применения: - автодорожная техника;

- декорация и дизайн;
- современная техника в виде радиационноустойчивых средств.

Техника фанлари номзоди илмий даражасига талабгор Адинаев Хидир Абдуллаевичнинг 05.17.11 — Силикат ва кийин эрийдиган нометалл материаллар технологияси ихтисослиги бўйича "Қўрғошинли шиша ва ситаллар таркиби ва олиш технологиясини яратиш"

мавзусидаги диссертациясининг

РЕЗЮМЕСИ

Таянч сўзлар: сурик, глёт, кварцли қум, техник сода, бор оксиди, глиназёмли чиқинди, шихта, кимёвий таркиб, фазавий таркиб, шиша, ситалл, йўл белгилари, витраж, γ-нурланиш.

Тадқиқот объектлари: қўрғошин силикатли шиша, камёб ва камёб-ер элементлар ёрдамида ранг берилган шишалар, шишакристалл материаллар, микрошариклар, йўл-сигнал белгилари, катафоталар, бадиий қисмлар, үнурланишдан олдинги ва кейинги шиша ва ситаллар.

Ишнинг мақсади: $PbO-SiO_2$ системаси асосида шиша ва ситаллар яратиш, назарий хисоблаш ва тажриба йўллари билан физик-кимёвий хоссаларини аниқлаш, рангли шиша ва ситаллар олиш имкониятини ўрганиш ва уларни қўлланиш соҳаларини аниқлаш.

Тадкикот методлари: қимёвий, оптик, рентгенографик, электронномикроскопик, термик, ИҚ спектроскопик, физик-кимёвий хоссаларини аниқлашнинг намунавий усуллари ва бошқалар.

Олинган натижалар ва уларнинг янгилиги: $PbO-SiO_2$ системаси асосида микрошариклар, катафоталар, бадиий кисмлар ва γ -нурланишга чидамли материаллар олиш учун ярокли иккита оптимал таркиб (70% PbO+30% SiO_2 ва

80% PbO + 20% SiO₂) яратилди. Биринчи марта 80% PbO + 20% SiO₂ таркибли шихтадан шиша хосил бўлиш жараёни иккита (2PbO·SiO₂ ва PbO·SiO₂) оралик фаза хосил бўлиши оркали амалга ошиши тажрибада тасдикланди; 70% PbO + 30% SiO₂ таркибли шихтадан эса, шиша хосил бўлиш жараёнида факат битта (PbO·SiO₂) оралик фаза хосил бўлади.

Биринчи марта бинар қўрғошин силикатли шишани микрошишашарикларга ва сўнгра йўл-сигнал белгиларига ўтишнинг барча технологик цикли ўрганиб чикилди.

 Cr_2O_3 , Mn_2O_3 , Fe_2O_3 ва Ni_2O_3 лардан фойдаланиб рангли шишалар олинди ва уларни витражлар, панно ва бошқалар тайёрлашда яроқли эканлиги аниқланди.

Қатор камёб элементлар қушиб шишалар синтез қилинди ва уларни ситаллга утиш имкониятлари урганилди. Олинган шишалардан γ-нурланишга чидамли материаллар олиш мумкинлиги борасидаги тадқиқотлар давом эттирилиши кераклиги курсатиб утилди.

Ўрганилаётган шишаларни ситалланишида термик ишлов бериш ва кристалланиш шароитига қараб паст ҳароратда $PbO \cdot SiO_2$ фазасини ҳосил бўлиш механизмига аниқлик киритилди.

Амалий ахамияти: қўрғошинли сурик, Джерой ва Тозбулоқ табиий кварц кумлари асосида йўл-сигнал белгилари олишга ярокли шаффоф шишалар ишлаб чикариш мумкинлиги исботланди. Яратилган рангли шишалар четдан келтириладиган манзарали буюмлар-витражлар ва бошка буюмларни ўрнини босишда ва ишлаб чикаришда долзарб ахамиятга эгадир. Олинган шиша ва ситаллар ү-нурланишга чидамли буюмлар яратилишида ахамиятлилиги кўрсатиб ўтилди.

Татбик этиш даражаси ва иктисодий самарадорлиги: яратилган шиша ва ситалл таркиблари «Олмазор ТМТЕИЧК» ва «EUROSTYLE» корхоналарида синалган.

 $PbO-SiO_2$ системасига бор ва натрий оксидлари қушиб олинган микрошишашарикларнинг сифатини яхшиланиши хисобига 1 кг шишадан олинган иқтисодий самарадорлик 13920 - 14400 сумни ташкил этди (2006 йилги хисобга кура).

 $PbO-SiO_2$ системасига камёб-ер элементларининг оксидлари қушиб олинган рангли шишаларнинг сифатини яхшиланиши ҳисобига 1 м² шишадан олинган иқтисодий самарадорлик 11750-12500 сумни ташкил этди (2008 йилги ҳисобга кура).

6 ой давомида фойдаланиш натижасида тайёрланган йўл белгиларнинг нурни қайтариш қобилияти қуйилган талабларга жавоб бериши аниқланди.

Қўлланиш соҳаси: - автойўл техникаси;

- декорация ва дизайн;
- замонавий техникада радиацияга чидамли воситалар сифатида.

RESUME

Thesis of Adinaev Hidir Abdullaevich on the scientific degree competition of the doctor of philosophy in technical science on specialty 05.17.11-«Technology of the silicate and refractory nonmetallic materials» subject: "Development of structures and technology of obtaining of lead-bearing glasses and glass ceramics"

Key words: lead minium, litharge, quartz sand, technical soda, oxide of a pine forest, alumina keeping waste, charge, a chemical compound, phase structure, glass, glass ceramic, traffic signs, stained glass, γ -irradiation.

Subjects of research: lead-silicate glasses, the painted glasses with using of rare and rare-earth elements, glass-ceramic materials, microballs, road-alarm signs, cat's eyes, art details, glass and glass ceramics before and after γ -irradiations.

Purpose of work: working out of structures of glasses on the basis of PbO-SiO₂ system, definition of physical and chemical properties by experimental and settlement paths, research of possibility reception of the painted glasses and glass ceramics, definition of areas of their use.

Methods of research: chemical, optical, radiographic, electron-microscopic, thermographical, IR spectroscopic, standard methods of definition of physical and chemical properties, etc.

The results obtained and their novelty. For the first time in system PbO-SiO₂ two structures (70% PbO + 30% SiO₂ and 80% PbO + 20% SiO₂) are defined as optimum from the point of view of obtaining on their basis glass balls, cat's eye, art details, γ -steady materials.

For the first time experimentally confirmed that silicate-formation in charges 80% PbO + 20% SiO₂ proceeds through formation of intermediate phases - $2\text{PbO}\cdot\text{SiO}_2$ and PbO·SiO₂; in charges 70% PbO + 30% SiO₂ as an intermediate phase acts only PbO·SiO₂.

For the first time for binary lead-silicate glasses are considered all work cycle of transition from glass in microglass balls and then in road-alarm signs.

There are obtained colour glasses with application Cr_2O_3 , Mn_2O_3 , Fe_2O_3 and Ni_2O_3 and defined their suitability for manufacturing of stained-glass windows, a panel and etc.

There are synthesized glasses with a number of rare-earth elements and studied the possibility of their transformation in glass ceramics. It is considered the possibility of using of the obtained materials as glasses, steady to γ -irradiation. Its is specified the necessity of carrying out of the further researches for this direction.

The mechanism of formation of PbO·SiO₂ as phase is specified at low-temperature of process of formation glass ceramics considered glasses depending on heat treatment and crystallisation conditions.

Practical value: possibility of manufacture on the basis of lead suric and natural quartz sand Dzheroj and Tozbulaksky deposits of transparent glasses suitable for manufacturing of the road-alarm signs is proved, the developed effective painted glasses have an urgency for creation import-swapping manufactures of the decorated products-stained-glass windows, panels, etc. The developed glass ceramics on preliminary data are suitable for creation of steady to γ -irradiation of materials.

Degree of embed and economic effectivity: the developed optimum structures of glasses and glass ceramics are approved in conditions of «Olmazor TMTYICHK» and industrial enterprise "EUROSTYLE".

Economic benefit from using of oxides PbO, SiO₂ with the additive oxides of pine forest and sodium as a result of quality improvement of micro-glass balls has made counting on 1 kg of glass 13920 - 14400 soums according to 2006 year.

Economic benefit from using of oxides of rare-earth elements in system PbO - SiO_2 as a result of improvement of quality of colour glasses has made counting on 1 m² glasses 11750 - 12500 soums according to 2008 year.

While in service within 6 months it is established, that reflective ability of the made signs meet the established requirements.

Field of application: - road technics;

- decoration and design;
- modern technics in the form of radiation-steady means.

