ТРЕБОВАНИЯ К РАДИОЛОГИЧЕСКИМ ЛАБОРАТОРИЯМ

Нурмухамедов Б.М. ст. преподаватель к.в.н.

Хушназаров А.Х. - младший научный сотрудник

Самакандский государственный университет ветеринарной медицины животноводство и биотехнологий.

Ветеринарный научно-исследовательский институт

Аннатация. Радиологические лаборатории играют важную роль в мониторинге и анализе радиационного фона, измерении уровня радионуклидов и обеспечении радиационной безопасности. Основной задачей этих лабораторий является проведение точных и надежных исследований, что требует соблюдения строгих стандартов и требований к организации, оборудованию и персоналу. В этом будут рассмотрены основные требования к радиологическим лабораториям для обеспечения безопасности, точности измерений и соответствия нормативным стандартам.

Ключевые слова: радиация, дозиметры и радиометры гаммаспектрометры сцинтилляционные счетчики, эвокуация.

Общие требования к радиологическим лабораториям относиться организация работы лаборатории

Радиологическая лаборатория должна иметь четкую структуру управления и распределение обязанностей среди персонала. Это включает назначение ответственных лиц за радиационную безопасность и контроль за выполнением установленных стандартов.

Лицензирование и аккредитация. Любая радиологическая лаборатория должна обладать соответствующей лицензией на проведение радиологических Аккредитация лаборатории осуществляется исследований. основе стандартам, таким как ГОСТ или ISO, и соответствия проверяется Нормативно-правовая органами. регулирующими база деятельность лабораторий регулируется радиологических рядом национальных международных нормативных актов, таких как:

- Закон "О радиационной безопасности населения".
- Санитарные правила СП 2.6.1.2612-10 санитарные правила обеспечения радиационной безопасности.
 - Международные нормы МАГАТЭ.

Требования к помещению лаборатории планировка и зонирование лаборатория должна быть грамотно спроектирована с учётом всех требований радиационной безопасности. Основные зоны:

- **Чистая зона** помещения для хранения документации, обработки данных.
- **Рабочая зона** место для проведения радиологических исследований с оборудованием.

• Контролируемая зона — зона, в которой могут быть высокие уровни радиации, где требуется особый контроль за временем пребывания и использованием защитных средств.

Вентиляция и контроль за загрязнением необходимо предусмотреть систему вентиляции с фильтрацией воздуха, чтобы минимизировать риск загрязнения воздуха радионуклидами. Важно поддерживать чистоту рабочих мест и проводить регулярные проверки на наличие радиоактивных загрязнений.

Экранирование и защита от радиации помещения лаборатории должны быть оборудованы специальными экранами, которые защищают персонал от воздействия ионизирующего излучения. Для этого используются материалы с высоким атомным числом, такие как свинец или бетон.

Требования к оборудованию типы оборудования основное оборудование радиологических лабораторий включает:

- Дозиметры и радиометры для измерения уровня радиации и радиоактивного фона.
 - Гамма-спектрометры для анализа состава радионуклидов.
- Сцинтилляционные счетчики для регистрации ионизирующих частиц.
- Пробоотборники и устройства для подготовки образцов для сбора и обработки исследуемых материалов.

Обслуживание и калибровка оборудование должно регулярно проходить техническое обслуживание и калибровку для обеспечения точности и надежности результатов исследований. Неисправное или некалиброванное оборудование может привести к ошибкам в измерениях, что неприемлемо в радиологических исследованиях.

Требования к персоналу образование и квалификация персонал, работающий в радиологической лаборатории, должен иметь соответствующее образование и подготовку в области радиационной безопасности и радиологии. Специалисты должны обладать навыками работы с радиационными источниками и оборудованием, а также разбираться в процедурах анализа.

Обучение и повышение квалификации персонал должен проходить регулярное обучение по вопросам радиационной безопасности, включая действия в чрезвычайных ситуациях и использование средств индивидуальной защиты (СИЗ). Необходимо также регулярное повышение квалификации для освоения новых методов и оборудования.

Средства индивидуальной защиты (СИЗ) все сотрудники должны использовать соответствующие СИЗ при работе с радиацией. Это включает:

- Лабораторные халаты, перчатки, защитные очки.
- При необходимости экранирующие средства, такие как свинцовые фартуки.
 - Дозиметры для контроля уровня полученной радиации.

Требования к безопасности и мониторингу радиационный контроль

В лаборатории должен быть установлен регулярный контроль радиационного фона, чтобы предотвратить превышение допустимых норм.

Этот контроль осуществляется с помощью стационарных и мобильных дозиметров.

Ведение документации лаборатория обязана вести подробную документацию по всем проведенным исследованиям, а также по результатам радиационного контроля. Это включает журналы учета доз персонала, акты проверок и результаты калибровок оборудования.

Управление радиоактивными отходами радиоактивные отходы, образующиеся в процессе работы лаборатории, должны быть должным образом учтены, временно храниться и утилизироваться в соответствии с требованиями законодательства. Лаборатория должна иметь специализированные контейнеры для сбора радиоактивных материалов и отходов.

Аварийная готовность план действий при авариях лаборатория должна иметь четко разработанный план действий в случае радиационного инцидента или аварии. В этот план входят:

- Эвакуация персонала.
- Меры по минимизации распространения радиационного загрязнения.
 - Уведомление компетентных органов и организаций.

Обучение персонала действиям в чрезвычайных ситуациях все сотрудники должны быть обучены действиям при радиационных авариях, включая использование СИЗ, эвакуационные процедуры и оказание первой помощи.

Заключение

Радиологические лаборатории играют важную роль в обеспечении радиационной безопасности и проведении исследований. Для того чтобы они функционировали эффективно и безопасно, необходимо строго соблюдать требования к организации, оборудованию, персоналу и безопасности. Соблюдение этих требований помогает минимизировать риски для здоровья людей, а также гарантировать точность и надежность получаемых данных.

ЛИТЕРАТУРА

- 1. Нурмухамедов, Б. М., Дилмуродов, Н. Б., Эшбуриев, С. Б., & Рахмонов, У. А. (2019). Морфофункциональная характеристика яичников у коз.
- 2. Каюмов, Т. Х., Нурмухамедов, Б. М., & Шарипов, Ю. Ю. (2010). Новое в профилактике рецидива и нагноения остаточных полостей после эхинококкэктомии печени. *Медицинский журнал Узбекистана*, *3*, 17-18.
- 3. Нурмухамедов, Б. М., Дилмуродов, Н. Б., Эшбуриев, С. Б., & Эшматов, Г. X. (2019). Морфофункциональные изменения в яичниках коз под влиянием гонадотропных препаратов.
- 4. Kajumov, T. H., & Nurmuhamedov, B. M. (2010). Sharipov JuJu. Novoe v profilaktike recidiva i nagnoenija ostatochnyh polostej posle jehinokokkjektomii pecheni [New in the prevention of relapse and suppuration of the residual cavity after echinococcectomy liver]. *Medicinskij zhurnal Uzbekistana [Medical Journal of Uzbekistan]*, 3, 17-18.

- 5. Kajumov, T. H., & Nurmuhamedov, B. M. (2010). Sharipov JuJu. Novoe v profilaktike recidiva i nagnoenija ostatochnyh polostej posle jehinokokkjektomii pecheni [New in the prevention of relapse and suppuration of the residual cavity after echinococcectomy liver]. *Medicinskij zhurnal Uzbekistana [Medical Journal of Uzbekistan]*, 3, 17-18.
- 6. Садыкова, Г. К., Эргашева, Н. Н., & Нурмухамедов, Б. М. (2010). Диагностика и лечение расстройств акта дефекации при спинномозговых грыжах у детей. Журнал теоретической и клинической медицины, 3, 28-131.
- 7. Ibragimov, B. K., & Nurmukhamedov, B. M. (2023). Pathomorphological changes in the body of karakul sheep with gossypol toxicosis. In *E3S Web of Conferences* (Vol. 463, p. 01037). EDP Sciences.
- 8. Nurmukhamedov, B. M. (2021). Morphofunctional characteristics of ovaries in goats. *ACADEMICIA: An International Multidisciplinary Research Journal*, 11(9), 741-745.
- 9. Ibragimov, B. K., & Nurmukhamedov, B. M. (2021). Radio vaccines against colibacteriosis, salmonellosis and pasteurellosis. *ACADEMICIA: An International Multidisciplinary Research Journal*, 11(9), 746-748.
- 10. Kasimov, S. Z., Nurmukhamedov, B. M., & Aripova, D. S. (2010, July). HEMOSORPTION IN COMPLEX MANAGEMENT OF HEPATARGY. In *INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS* (Vol. 33, No. 7, pp. 453-453). 72/74 VIA FRIULI, 20135 MILAN, ITALY: WICHTIG EDITORE.
- 11. Нурмухамедов, Б. М. (1992). *Особенности изменения структур яичников при применении простаноидов для регуляции половой функции у каракульских овец* (Doctoral dissertation, Самаркандский сельхоз. ин-т).