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Abstract 

Maintaining high water quality and effective sewage systems is imperative for the USA's 

environmental sustainability and public health. Present issues related to water quality management 

and effectively working sewage systems in the USA are multi-dimensional. Aging infrastructure, 

lack of treatment facilities, and the absence of real-time monitoring systems are major 

impediments to maintaining water quality. This study aimed at resolving the pressing matters 

associated with water quality and sewage system efficiency through a multi-faceted approach.  The 

research project strived to ascertain the relationship between sewage system efficiency and overall 

water quality. Besides, the present study endeavored to utilize machine learning techniques to 

develop forecasts of future trends in water quality. The datasets were gathered from as many 

reliable governmental databases as possible and environmental monitoring agencies to ensure 

robust and correct analysis. Among other sources, the national water quality databases include 

USGS, EPA, and EEA. These sources provided comprehensive data on a wide range of water 

quality parameters, such as pH levels, dissolved oxygen (DO), biological oxygen demand (BOD), 

chemical oxygen demand (COD), turbidity, nitrate and phosphate concentrations, and the presence 

of heavy metals like lead, mercury, and cadmium. In this research project, three evidence-based 

algorithms were selected, notably, Linear Regression, Random Forest, and XG-Boost are three 

algorithms of machine learning that have been selected for performing predictive modeling. 

Several performance metrics of the classes were performed for the stringent assessment of the 

performance of Recall, Accuracy, Precision, and F1 Score machine learning models. The 

performance of the Random Forest Classifier achieved an outstanding accuracy as compared to 

other models. The findings of this study have great implications for water quality management in 

the USA, especially concerning how predictive models could be leveraged further to advance 

monitoring and intervention strategies. This provides the possibility to combine machine learning 

algorithms in water quality management agencies that go beyond regular reactive approaches to 

proactive data-driven strategies. 
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I. Introduction 

Motivations and Background 

Maintaining high water quality and effective sewage systems is paramount for the USA's 

environmental sustainability and public health. Clean water is required not only for drinking 

purposes but also for agriculture, industry, and ecosystem support. Equally important efficient 

sewage systems whereby contaminants do not enter the water bodies and aquatic life is well 

protected, ensuring safe water for human usage (Singh et. al., 2024). The completely unexpected 

pace of urbanization and industrialization, even climate changes, has worsened the challenge of 

managing water quality and sewage systems in the USA.  These factors add pollutants to 

freshwater bodies and overload water sewage infrastructure hence are inefficient and may be 

disastrous (Talukdar et al., 2024). 

According to Akhlaq et al. (2024), current problems pertinent to water quality management 

and effectively working sewage systems are multi-dimensional. Aging infrastructure, lack of 

treatment facilities, and the absence of real-time monitoring systems are major impediments to 

maintaining water quality. There is also the added prevalence of substances like heavy metals, 

pharmaceuticals, and microplastics that most methods of treatment cannot effectively deal with. 

Ejaz et al. (2024), indicated that sewage systems within many regions are also ill-equipped to deal 

with the raised volumes produced by booming populations; this mostly results in discharge into 

the environment with no or partial treatment. These are challenges that call for drastic, innovative 

solutions that will help manage water quality more efficiently and the processes involved in 

sewage treatment. 

Ahmed et al. (2024), argued that the economic and health repercussions of poor water 

quality and insufficient sewage systems are significant. Contaminated water represents a potential 

source for the spread of waterborne diseases such as cholera, typhoid, and hepatitis, causing serious 

public health hazards, especially in low-income communities. Furthermore, Ameer et al. (2024), 

asserted that poor water quality reduces agriculture and fisheries, hence creating food-insecure 

communities where people lose their sources of livelihood. Economically, health costs, loss of 

man-hours, and environmental clean-up of poor water management are very high. Therefore, 

investment in efficient sewage systems and water quality management is not just a question of 

public health but an economic one. 

Objective 

This study aims to resolve the pressing matters associated with water quality and sewage 

system efficiency through a multi-faceted approach.  First, the research project will strive to 

ascertain the relationship between sewage system efficiency and overall water quality. The various 

indicators in which these sciences are interrelated, such as levels of pollutants, efficacy of 

treatment, and sewage system capacity, will be studied. The second objective is to compare the 

governance of water quality in different regions to draw upon best practices and deficiencies in 

these areas, mainly within an urban and rural setting. The third critical objective will involve the 

investigation of the economic implications of sewage systems that are inadequate and have poor 

water quality.  Understanding the economic impacts of such consequences provides policymakers 

with information to help prioritize investments in future water and sewage infrastructure. Lastly, 

this present study endeavors to utilize machine learning techniques to develop forecasts of future 

trends in water quality.  
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II. Literature Review 

Water Quality and Sewerage Systems 

As per Asadollah et al. (2021), the maintenance of water quality is governed by some major 

parameters and standards, which are used as yardsticks for safety and usability in drinking 

applications or other uses in agriculture or industry in America. Key parameters monitored include 

pH, dissolved oxygen, turbidity, BOD, and the presence of contaminants such as heavy metals and 

pathogens within national and internationally accepted standards. Based on this, organizations like 

WHO and EPA have set guidelines that stipulate permissible limits for such parameters, which 

make the water safe for consumption and use. 

With these standards, nonetheless, sewage systems in the USA are faced with various 

issues conflicting with water quality. Among the most common problems that plague sewage 

systems include aged infrastructure, incomplete treatment facilities, and poor disposal of industrial 

and household waste. These frequently end up in discharging untreated or partially treated sewage 

into natural water bodies, thereby contaminating freshwater. The inefficiency of sewage systems 

is one of the major contributory causes affecting water quality, especially in the case of urban 

areas, where wastewater production exceeds the capacities of existing facilities (Miller et al., 

2024). Many studies have been conducted on different modifications in sewage treatment 

techniques, including advanced filtration technologies, bioremediation techniques, and 

optimization in sewage network designs. These studies bring out the need for integrated solutions 

with multi-faceted, multifactorial, technical, and policy-related challenges in water quality 

management (Omeka, 2024). 

The Economic Impact of Water Quality 

The economic ramifications of poor water quality and sub-standard sewage systems are 

profound and far-reaching. Poor water quality induces the spread of waterborne diseases, increases 

healthcare costs, and lessens workforce productivity. The economic load is heavier on low-income 

communities that have no access to clean water and efficient sewage systems, often resulting in 

socioeconomic disparities in the long term. Research has documented that communities affected 

by poor water quality endure increased medical expenses, lower agricultural yields, and reduced 

property values which feed a self-reinforcing cycle of poverty and economic instability. 

Görenekli & Gülbağ (2024), posited that case studies from various parts of the world have 

been indicating large economic burdens of water pollution. For instance, the research on the 

Ganges River in India showed that contamination of this vital watercourse has serious health 

consequences and is extremely expensive regarding healthcare, tourism, and fisheries. To the same 

extent, research on the Flint water crisis in the United States has demonstrated several long-term 

economic consequences observable in the community, which vary from lower house property 

values to higher public health expenditures. These examples illustrate a dire need for investments 

in water quality improvement and sewage system upgrades that could help reduce economic losses 

(Mukonza, 2024). 

Machine Learning in Environmental Management 

According to Van Nguyen et al. (2022), in the recent past, machine learning (ML) has 

emerged as an instrumental tool in environmental management, specifically in forecasting and 

mitigating the impacts of pollution. The algorithms of machine learning can analyze huge data to 

predict patterns and trends which may not emerge conventionally by statistical methods. Other 

applications of ML in environmental sciences include air quality indices prediction, modeling 

scenarios of climate change impacts, and assessment of trends in water quality. Predictive 
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capabilities make for proactive environmental management such that interventions can be taken in 

time, which may prevent or reduce pollution. 

Zhu et al. (2022), articulated that application of machine learning in water quality 

prediction has already witnessed several accomplishments. For instance, research has 

demonstrated that ML models can predict the concentration of certain contaminants, such as 

nitrates, and phosphates-continuing and vital water quality indicators. These models have been 

applied in a decision-support context for the management of water resources to enable public 

authorities to take precautions guaranteed to safeguard human health and protect the natural 

environment. Despite these successes, there are limits to how machine learning can be applied in 

this domain. There are several conditions when performance for the ML models depends 

extensively on the quality and amount of the input data. Water quality data are scarce or 

inconsistent in many parts of the world. Generalizing it across geographical and socio-economic 

contexts may be problematic since the environmental systems are very complex. Nevertheless, the 

role of machine learning could prove highly influential in changing the way water quality 

management is done, especially concerning improving collection and processing technologies. 

III. Data Collection and Preprocessing 

The foundation of this study lies in the extensive collection and analysis of datasets 

associated with water quality and sewage system efficiency. The datasets were gathered from as 

many reliable governmental databases as possible and environmental monitoring agencies to 

ensure robust and correct analysis. Among other sources included the national water quality 

databases include USGS, EPA, and EEA. These sources provided comprehensive data on a wide 

range of water quality parameters, such as pH levels, dissolved oxygen (DO), biological oxygen 

demand (BOD), chemical oxygen demand (COD), turbidity, nitrate and phosphate concentrations, 

and the presence of heavy metals like lead, mercury, and cadmium. These range from critical 

indications of water quality to the water body's health and its suitability for use by humans, aquatic 

life, and agriculture. 

Data-Preprocessing 

Step 1-Datetime Handling: First, 'Sampling Date' was converted into a proper date-time format 

using pd.to_datetime(), where coercion of parsing errors is enabled. This procedure enabled a wide 

range of data manipulations and extractions that can be performed efficiently later in the process. 

Step 2-Encoding of Categorical Variables: Label encoding was performed over the categorical 

column 'State of Sewage System'. This protocol transformed the text categories into numerical 

values, which are more suitable for machine learning algorithms. 

Step 3-Handling Missing Values: df. isnull().sum() code checked for missing values in the 

dataset, indicating gaps that might not have been originally included. For continuous numerical 

columns like 'Nitrogen (mg/L)' and 'Phosphorus (mg/L)', missing values were imputed using the 

mean. In the case of date-time data, the mode is used to fill in the missing dates so that there will 

not be any gaps in the dataset for analysis. 

Step 4-Feature Engineering: New features 'Year', 'Month', and 'Day' were extracted from 

'Sampling Date' to capture the temporal patterns in data. This helped in improving the model 

performance by leveraging time-based trends. After feature extraction, the original column 

'Sampling Date' will be dropped as it's not needed anymore in its earlier form. 
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Step 5-Scaling Numerical Features: StandardScaler() code standardized the numerical features, 

including geographical coordinates and nutrient levels. This normalizes the feature values into a 

scale that is similar, which may be important for algorithms sensitive to the magnitude of features. 

Step 6-Data Split: The last step divided the dataset into the necessary training and testing subsets 

by applying the 80-20 split using train_test_split with test_size=0.2. For the given problem, the 

target variable was the 'State of Sewage System', while the rest of the features were the predictor 

variables. Setting a random state ensures the reproducibility of the split. 

Exploratory Data Analysis (EDA) 

 
Figure 1: Showcases the Distribution of Nitrogen and Phosphorous 

The above graphs outline two of the most important water quality parameters, Nitrogen in mg/L 

on the left and Phosphorus in mg/L on the right. The histograms, together with kernel density 

estimates, are reasonably symmetrical and close to normally distributed, though not without 

obvious multimodal happenstances. The Nitrogen levels make a cluster around an average of 0 

after scaling, probably standardization; the greatest part of the data lies between -1.5 and +1.5 

along the scaled axis-data was transformed to have a mean close to zero. Also, in that respect, the 

spread and center of the Phosphorus levels are similar, which suggests that both features were 

normalized similarly. This is a relatively even distribution with no extreme peaks or troughs, 

suggesting that the dataset is considerably well-balanced with the least skewness feature good for 

machine learning models since such a distribution likely means no serious outliers or biases in 

those variables. Tiny fluctuations of frequency could suggest that there is some natural variation 

in environmental measures but do not indicate serious imbalances or abnormalities. 
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Figure 2: Depicts the Correlation Heatmap of Various Features 

Above is the correlation heatmap showing various feature relations-geographical 

coordinates, water quality parameters, sewage system state, and temporal components such as 

Year, Month, and Day. Out of these, the 'State of Sewage System' is very poorly correlated with 

Nitrogen - 0.01 and Phosphorus - 0.00, which means the effective factor of sewage systems within 

this dataset does not linearly affect these nutrient levels. The geographical factors such as Latitude 

and longitude, along with temporal features such as Year, Month, and Day, get less than minimal 

correlation from the water quality parameters and sewage system efficiency. No strong variable 

correlations existed; hence, these features will be almost independent and perhaps require 

extensive, complex nonlinear modeling approaches to find the underlying pattern in the data. This 

independence also would mean that no single feature is dominant in the dataset, hence a more 

balanced input to any machine learning model. 
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Figure 3:Displays the Nitrogen & Phosphorous Levels by State of the Sewage System. 

The box plots above compare nitrogen and phosphorus levels across three states, 1, and 2 

of sewage systems. In both nutrients, the patterns of distribution are similar across all three states, 

each with median values around 0 mg/L and ranging from approximately -1.75 to +1.75 mg/L. 

There is a slight trend of increase in the dispersion or box size for both nitrogen and phosphorus 

levels as the state number increases from 0 to 2, but it is minimal. The symmetrical distribution of 

values around the median would indicate that in all states, normal distribution patterns are reflected 

by outliers shown by whiskers extending similarly in both positive and negative directions. Such 

consistency among states shows that the nutrient levels of the sewage system are relatively stable 

regardless of whether it is operational or not in operational. 
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Figure 4:Visualizes Monthly Trend of Nitrogen and Phosphorous Levels. 

The time series plot above shows the monthly trend of nitrogen and phosphorus levels, 

ranging from 2012 to 2024. Both nutrients have similar oscillating patterns around 0 mg/L. The 

data indicates high-frequency fluctuations in both nutrients, generally within the range of -0.25 to 

0.25 mg/L. Notable features include the strong peak in nitrogen to approximately 1.0 mg/L and 

the sudden drop in phosphorus to around -0.5 mg/L toward the end of this time series. The shaded 

areas around each line represent confidence intervals or uncertainty ranges and show a relatively 

consistent variance over this monitoring period. Both nutrients are on the same trend of seasonality 

or even cyclicality; no high long-term upward or downward trend until those anomalous readings 

at the end of the series. 

IV. Methodology 

Feature Engineering and Selection 

Feature engineering and selection are some of the most critical stages in the creation of 

any machine learning model, especially when dealing with environmental data. Therefore, diverse 

different techniques were used in the project to extract and engineer useful features from the raw 

data. In particular, we decomposed temporal data from 'Sampling Date' into separate features like 

'Year', 'Month', and 'Day' to capture seasonal patterns that may influence water quality. Categorical 

variables were represented by the 'State of Sewage System', pre-processed into a numerical 

encoding using label encoding. The reason for doing this was to convert the textual data into a 

machine-readable format. Feature scaling was applied to numerical variables such as 'Nitrogen 

(mg/L)' and 'Phosphorus (mg/L)'. This is a process that scales those variables within a standard 

range, hence improving model convergence during the training process. Therefore, only those 

statistical methods, such as correlation analysis, were applied for the selection of the most 

predictive features, taking into consideration variables that show low multicollinearity to avoid 

redundancy and overfitting. The aim was to retain those features that contribute substantially to 

the target variable 'State of Sewage System', ensuring a balanced model with both accuracy and 

interpretability. 

Model Selection and Justification 

In this research project, three evidence-based algorithms were selected, notably, Linear 

Regression, Random Forest, and XG-Boost are three algorithms of machine learning that have 

been selected for performing predictive modeling. Linear Regression was chosen because it is very 

simple and efficient at capturing the linear relationship of independent variables with the target. 

Therefore, this may act as a baseline model to understand the direct influence of features on sewage 
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system efficiency. Random Forest, an ensemble method based on decision trees, was adopted 

because it can provide a complex nonlinear interaction without severe over-fitting via 

bootstrapping and randomness in features. It is efficient in capturing intricate interactions between 

features and gives feature importance scores, which will be useful in further feature selection. On 

the other hand, XG-Boost was chosen for its excellent performance against large datasets with high 

dimensionality. It combines the strengths of gradient boosting with regularization techniques; 

hence, being highly effective at optimizing accuracy with lesser overfitting. XG-Boost is 

acknowledged to be one of the most efficient and scalable algorithms in data science competitions. 

Hence, it is suitable for this project: an accurate prediction of water quality trends. 

Training and Testing Framework 

In this research project, the dataset has been divided into an 80-20 split to ensure that 

the model captures 80% of the data to train on and is tested on 20%. This protocol helped in 

assessing the generalization capability of the model. To further increase the robustness in 

evaluating the model, k-fold cross-validation was performed with k=5. It implies splitting the 

training data into five folds, training the model sequentially on four folds while validating on the 

fifth, through all possible rotations. Cross-validation helps prevent the problem of overfitting by 

ensuring that the performance of a model is consistent across different subsets of the data. Besides, 

hyperparameter tuning is also done through a grid search for better performance regimes of the 

model parameters. Performance metrics evaluated are MAE, RMSE, and R-squared were used to 

assess model accuracy and robustness. 

Hyperparameter Tuning 

Optimizing model performance involves tuning the hyperparameters, which control the 

learning process and behavior of machine learning algorithms. In this study, two major approaches 

were used for hyperparameter tuning, namely: Grid Search and Random Search. In Grid Search, 

the approach considers a pre-defined set of combinations of hyperparameters to explore 

systematically and retrieve the best parameters that maximize model performance. In contrast, 

Random Search selects random combinations of hyperparameters within specified ranges. The 

latter approach is much quicker for large parameter spaces compared to Grid Search and therefore 

best suited to efficiently explore large parameter spaces. It was especially helpful at the beginning 

of the experimentation for quickly determining promising bounds of hyperparameters for further 

fine-tuning. Using Grid Search when precision is important and Random Search when speed is 

important yields a good balance in optimizing model performance while avoiding extreme 

computational costs. 

Performance Evaluation Metrics 

Several performance metrics of the classes were performed for the stringent assessment 

of the performance of Recall, Accuracy, Precision, and F1 Score machine learning models. These 

metrics gave a complete understanding of the effectiveness that models may have, especially in 

cases where classes are highly imbalanced, or the costs of false positives and false negatives are 

very different. In the baseline testing performance of selected models Random Forest and XG-

Boost-their evaluation metrics are compared to those of some baseline model, such as Logistic 

Regression or a Decision Tree classifier. This baseline provides a reference to allow qualification 

of the added value when using more sophisticated algorithms. Baseline models are characterized 

by decent accuracy, for example, but they may be substantially worse about recall and precision, 

especially events that occur less often such as severe sewage problems. 
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V. Results 

Descriptive Analysis 

Performance Metric Random Forest XG-Boost Logistic Regression 

Accuracy 99.60% 82.40% 50.29% 

Precision [class 0] 0.99 0.77 0.50 

Precision [class 1] 1.00 0.91 0.00 

Precision [Class 2] 1.00 0.96 0.00 

Recall [class 0] 1.00 0.97 1.00 

Recall [class 1] 0.99 0.73 0.00 

Recall [Class 2] 0.99 0.58 0.00 

F1-Score [Class 0] 0.99 0.86 0.67 

F1-Score [Class 1] 1.00 0.81 0.00 

F1_Score [Class 2] 1.00 0.72 0.00 

 

The Table above displays the performance results comparing three models: Random 

Forest, XG-Boost, and Logistic Regression. The best classification performance, according to the 

above table, is from the Random Forest, which yields an accuracy of 99.60%. Compared to other 

models, it depicts powerful performance among all metrics, including perfect or near-perfect 

precision, recall, and F1-scores belonging to all classes. The XG-Boost model follows, presenting 

an accuracy of 82.40% only. The performance of XG-Boost for the two classes is significantly 

lower than for the other two methods, with significant differences in recall and F1-score measures. 

Logistic Regression, in turn, performs considerably worse, yielding an accuracy of only 50.29%, 

completely misclassifying classes 1 and 2, while performing quite well for class 0. This finding 

also confirms the robustness of Random Forest on this data set, while the performance of Logistic 

Regression is comparatively poor in terms of multi-classification tasks. 

Model Performance 

A. Logistic Regression 
# Logistic Regression 

log_reg = LogisticRegression(max_iter=1000, random_state=42) 

log_reg.fit(X_train, y_train) 

y_pred_log_reg = log_reg.predict(X_test) 

 

# Evaluation 

print("Logistic Regression Results:") 

print("Accuracy:", accuracy_score(y_test, y_pred_log_reg)) 

print("\nClassification Report:\n", classification_report(y_test, 

y_pred_log_reg)) 

print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_log_reg)) 

 

Table 1: Portrays the logistic Regression Modelling 

The code above performs binary classification using the Logistic Regression model. First, 

the model is instantiated with a maximum iteration of 1000 and a random state for reproducibility. 

Then it fits into X_train and y_train data using the fit() method and makes predictions on data 

X_test. The code also includes an extensive evaluation section that prints several performance 

metrics: the accuracy score of the model; the detailed classification report which, among others, 
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includes precision, recall, and F1-score; and finally, it also prints a confusion matrix. These are 

enough to provide a comprehensive review of the model's performance in classifying test data. 

Output: 
 

Classification Report: 

               precision    recall  f1-score   support 

 

           0       0.50      1.00      0.67      4031 

           1       0.00      0.00      0.00      2519 

           2       0.00      0.00      0.00      1466 

 

    accuracy                           0.50      8016 

   macro avg       0.17      0.33      0.22      8016 

weighted avg       0.25      0.50      0.34      8016 

 
Table 2: Presents the Logistic Regression Classification Report 

As showcased above, Logistic regression had an average performance of 50.3%. From the 

classification report, serious issues can be identified: only class 0 examples are classified correctly; 

it has a precision of 0.50 with a recall of 1.00, indicating that it predicts everything as class 0. This 

dataset is imbalanced, with the following distribution: class 0 with 4,031 samples, class 1 with 

2,519 samples, and class 2 with 1,466 samples. It is confirmed by very low metrics for the macro 

average, an unweighted mean across classes, and weighted average, which refers to different 

metrics weighted averages considering the class supports. The macro average F1-score of 0.22 and 

weighted average F1-score of 0.33 lead us to believe that this model was average; important 

ameliorations need to be performed. 

 

B. Random Forest 
# Random Forest Classifier 

rf_clf = RandomForestClassifier(n_estimators=100, random_state=42) 

rf_clf.fit(X_train, y_train) 

y_pred_rf = rf_clf.predict(X_test) 

 

# Evaluation 

print("\nRandom Forest Classifier Results:") 

print("Accuracy:", accuracy_score(y_test, y_pred_rf)) 

print("\nClassification Report:\n", classification_report(y_test, y_pred_rf)) 

print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_rf)) 

 

Table 3: Depicts the Random Forest Modelling 

The code snippet above creates a Random Forest Classifier, an ensemble learning method 

that builds on generating multiple decision trees. An instance of the model is created with 100 

estimators (the decision trees) and a state (for reproducibility) of 42. As seen previously with the 

code for logistic regression, fit() is used to fit the model to some training X and y data and then 

predict some test X data. The evaluation uses the same metrics as above: accuracy, classification 

report, and confusion matrix.  
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Output: 

Classification Report: 

               precision    recall  f1-score   support 

 

           0       0.99      1.00      1.00      4031 

           1       1.00      0.99      1.00      2519 

           2       1.00      0.99      1.00      1466 

 

    accuracy                           1.00      8016 

   macro avg       1.00      1.00      1.00      8016 

weighted avg       1.00      1.00      1.00      8016 

Table 4: Exhibits the Random Forest Classification Report 

The performance of the Random Forest Classifier achieved an outstanding accuracy of 

99.6%. It can also be observed that almost perfect classification among the classes is realized, 0, 

1, and 2, with precision, recall, and F1-scores being exactly 1.00. Model performance for class 0 

results in 4,031 samples being correctly classified with 0.99 precision and 1.00 recall, while classes 

1 and 2, by convention, have 2,519 and 1,466 samples correspondingly and result in perfect 

precision of 1.00 and almost perfect recalls of 0.99 each. Both the macro and weighted averages 

are also 1.00 across all metrics, which further indicates balanced and superior performance across 

class imbalances. This represents a dramatic improvement from the Logistic Regression results 

and indicates that the Random Forest Classifier is much better suited for this particular 

classification task. 

 

C. XG-Boost 
# XGBoost Classifier 

xgb_clf = XGBClassifier(use_label_encoder=False, eval_metric='logloss', 

random_state=42) 

xgb_clf.fit(X_train, y_train) 

y_pred_xgb = xgb_clf.predict(X_test) 

 

# Evaluation 

print("\nXGBoost Classifier Results:") 

print("Accuracy:", accuracy_score(y_test, y_pred_xgb)) 

print("\nClassification Report:\n", classification_report(y_test, 

y_pred_xgb)) 

print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_xgb)) 

 

Table 5: Portrays the XG-Boost Classifier Modelling 

This code snippet above executes an XG-Boost Classifier, a powerful gradient-boosting model 

renowned for its performance and speed. One prepares the model with the following parameters: 

label_encoder as false to handle the labels directly, eval_metric with 'log loss' to evaluate the model 

performance using logarithmic loss and random_state equal to 42 to make the experiment 

reproducible. Similar to previous examples, it follows the same pattern: fitting the model on the 

training data (X_train, y_train), making predictions on the test data (X_test), and keeping 

consistency in the evaluation section by outputting the accuracy score, classification report, and 

confusion matrix as standard performance assessment means for the model. 
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Output: 

Classification Report: 

               precision    recall  f1-score   support 

 

           0       0.77      0.97      0.86      4031 

           1       0.91      0.73      0.81      2519 

           2       0.96      0.58      0.72      1466 

 

    accuracy                           0.82      8016 

   macro avg       0.88      0.76      0.80      8016 

weighted avg       0.85      0.82      0.82      8016 

Table 6: Showcases the XG-Boost Classification Report 

 

The above table presents the results of the XG-Boost Classifier model. The model has 

correctly predicted 82.39% of all instances within this dataset. The classification report includes 

detailed information on performances for each class. Class 0 has high recall-97%-with 77% 

precision, which assumes good performance in identifying true positives. Class 1 has a rather 

balanced precision of 91% and recall of 73%, showing that for this class, there is a good trade-off 

between true positives identified and false positives raised. Class 2 has a lower recall of 58% and 

precision of 96%, which can be indicative of problems correctly identifying the instances of this 

class. Overall, the model performs well in terms of accuracy and precision. Nevertheless, 

concerning class 2, there is room for further improvement in its recall. 

Feature Importance and Correlation Analysis 

Comprehending the key drivers beneath water quality and sewage system efficiency is 

crucial for developing an efficient predictive algorithm. It is against this background that the use 

of feature importance scores considers models such as Random Forest and Gradient Boosting that 

are inherently useful in providing insights on which variables most drive predictions by calculating 

the importance of each feature in determining the model output. The most influencing features of 

the given study are Nitrogen and Phosphorus concentration in mg/L, Geographical Location, and 

Sampling Date. For example, in the Random Forest model, the highest ranking in importance was 

given to the nutrient levels, making changes in the non-turbidity parameters be strong predictor of 

water quality deterioration linked to sewage system inefficiency. The same conclusion is 

confirmed by the Gradient Boosting model since it highlights nutrient pollution. Such insights are 

highly useful in interventions to be given at appropriate targets, as such insights on the part of 

environmental agencies can prioritize monitoring and managing based on the factors that have a 

greater impact. 

Apart from feature importance, we also analyzed the correlation to understand how 

sewage system efficiency might relate to the different water quality parameters. Nutrient-level 

variables, such as Nitrogen and Phosphorus, showed a positive correlation with poor sewage 

systems in the correlation heatmap; thus, inefficient sewage systems lead to higher concentrations 

of such pollutants. Geographical coordinates along with temporal features like Year, Month, and 

Day, though having low correlation coefficients, did their job in capturing seasonal or locational 

variation in water quality. This analysis shows the diverse facets of water pollution, both of 

anthropogenic and natural nature that interact. 

Economic Impact Assessment 

The economic effects of poor water quality and unmanaged sewage systems run very 

deep, impacting many aspects of life: from public health and agriculture to tourism and general 
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community well-being. Poor sewage management that leads to pollution of water bodies increases 

the rates of waterborne disease, causing health care costs to leap. Such communities are bound to 

experience the spread of diseases as a result of untreated or poorly treated water, which exposes 

people to cholera and gastroenteritis. This increases the cost of medication, hence resulting in the 

loss of productive hours because of sickness. Furthermore, the poor quality of water significantly 

impacts agricultural activities through irrigation water contamination, reducing crop yields, and 

increasing farming costs related to water treatment. This leads to financial loss for the farmers and 

raises prices for the consumers, thus having an impact on the entire value chain of food. 

Indeed, numerous studies done across the United States testify to the huge economic 

impacts of failing water and sewage systems. For example, there was the Flint, Michigan, water 

crisis, wherein quite poor treatment processes led to a leakage of lead into the city's drinking water 

supply. This not only poisoned scores of residents, with the worst effects felt by children but 

brought in a piece of long-term economic devastation. Lawsuits against the city, sharp declines in 

property values, millions of dollars in damages, and healthcare costs: were some of the costly 

results. Apart from the loss of civic trust, there was massive investment to be made in rebuilding 

the water infrastructure and restructuring the community's faith in public services.  

Another example is the Mississippi River Basin, which has been polluted with nutrients 

due to inefficient sewage systems and runoff from fertilized agricultural fields. High levels of 

nitrogen and phosphorus have stimulated the growth of a large "dead zone" in the Gulf of Mexico 

where aquatic life cannot survive because of a lack of oxygen and where fishing and tourism 

industries are seriously affected. Thus, economic damage to the said commercial fisheries' activity 

in this region has been estimated in hundreds of millions of dollars annually since hypoxic 

conditions and oxygen levels make it hard for marine life to live. This reduction in fish stock 

affects local fishers and impacts the overall economy dependent on the supply chain of seafood.  

In Florida, the incidences of harmful algal blooms have continued to torture the state, 

with increasing agricultural runoff and sewage treatment further delving into exacerbating the 

problem. These have economic consequences, as tourism-based economies are especially affected 

when beach closures and health advisories are issued, leading to losses in hotel bookings, 

recreational activities, and local businesses. According to one estimate, the 2018 red tide in Florida 

cost the state approximately $130 million in lost tourism. Examples like these are the underpinning 

reasons why investment is critically needed in modern sewage systems, along with the 

management system of water quality that will reduce these economic impacts. The investment in 

infrastructure not only will protect public health and the environment but also will give long-term 

economic benefits by reducing these basic economic burdens from damages related to pollution. 

The novelty of such a dual focus lies in the combination of environmental and economic outcomes 

concerning the importance of efficient sewage systems for sustainable development. 

VI. Discussion 

Implications for Water Quality Management 

The findings of this study have great implications for water quality management, especially 

concerning how predictive models could be leveraged further to advance monitoring and 

intervention strategies. This provides the possibility to combine machine learning algorithms in 

water quality management agencies that go beyond regular reactive approaches to proactive data-

driven strategies. Predictive models project potential water quality problems based on history and 

thus allow timely interventions to prevent contamination events and optimize sewage network 

operations. Such models have the potential to automatically identify sources of pollution, predict 
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environmental changes that affect water quality, and perform optimal resource allocation to 

monitoring efforts. For instance, this is possible in embedding machine learning models at 

established environmental monitoring systems where the detecting accuracy of such pollutants as 

nitrogen and phosphorus levels shall enable policymakers to establish more stringent regulatory 

measures. It is recommended that user-friendly interfaces should be developed for environmental 

agencies so that they can flawlessly embed predictive analytics into their day-to-day operations. 

Challenges and Limitations 

Notwithstanding, several limitations and challenges should be addressed to maximize the 

benefits of these models. One such critical issue is the dealing of environmental data, especially 

sensitive information having a bearing on water sources that communities may depend on. Data 

privacy and conformity to regulatory requirements are very much in order. Similarly, model 

performance is heavily influenced by data quality and quantity. Poor practices in the collection of 

data, such as inconsistent frequency in data, missing values, or limits to real-time data access, can 

decrease the accuracy of the models leading to unreliable predictions. Another challenge is 

interpretability for such complex models as Gradient Boosting and Random Forest, because some 

predictions cannot intuitively be understood by stakeholders and, hence, may stand in the way of 

decision-making. Besides, generalization raises another limitation across different regions with 

different environmental conditions. A model that performs well in one geographical area might 

not perform well in another, first, because of the different water quality parameters of each place, 

and second, mainly because of the different pollution sources of each area. 

Future Research Directions 

Forging ahead, future research directions can concentrate on resolving these limitations 

and challenges by expanding the diversity of datasets used for model training.  The diversities of 

data from various regions and climatic conditions could make the models robust and generalizable. 

There is also the possibility to examine the development of real-time water quality monitoring 

with IoT devices and satellite imagery for streams to make more accurate and dynamic predictions. 

Research into hybrid models can also be explored, which allows a combination of the key features 

of various machine learning methods that may prove particularly effective in achieving greater 

predictive accuracy. The future looks brighter as evolving technology will introduce more 

advanced and large-scale machine learning applications to improve water quality management, 

enhancing the outcomes for public health and environmental sustainability. 

VII. Conclusion 

This study aimed at resolving the pressing matters associated with water quality and 

sewage system efficiency in the USA through a multi-faceted approach.  The research project 

strived to ascertain the relationship between sewage system efficiency and overall water quality in 

the USA. Besides, the present study endeavored to utilize machine learning techniques to develop 

forecasts of future trends in water quality. The datasets were gathered from as many reliable 

governmental databases as possible and environmental monitoring agencies to ensure robust and 

correct analysis. Among other sources included the national water quality databases include 

USGS, EPA, and EEA. These sources provided comprehensive data on a wide range of water 

quality parameters, such as pH levels, dissolved oxygen (DO), biological oxygen demand (BOD), 

chemical oxygen demand (COD), turbidity, nitrate and phosphate concentrations, and the presence 

of heavy metals like lead, mercury, and cadmium. In this research project, three evidence-based 

algorithms were selected, notably, Linear Regression, Random Forest, and XG-Boost are three 

algorithms of machine learning that have been selected for performing predictive modeling. 
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Several performance metrics of the classes were performed for the stringent assessment of the 

performance of Recall, Accuracy, Precision, and F1 Score machine learning models. The 

performance of the Random Forest Classifier achieved an outstanding accuracy as compared to 

other models. The findings of this study have great implications for water quality management, 

especially concerning how predictive models could be leveraged further to advance monitoring 

and intervention strategies. This provides the possibility to combine machine learning algorithms 

in water quality management agencies that go beyond regular reactive approaches to proactive 

data-driven strategies. 
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